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C h a p t e r

1
Chapter1Introduction

This manual describes the Object Pascal programming language as it is used in 
Borland development tools.

What’s in this manual?
The first seven chapters describe most of the language elements used in ordinary 
programming. Chapter 8 summarizes standard routines for file I/O and string 
manipulation.

The next chapters describe language extensions and restrictions for dynamic-link 
libraries and packages (Chapter 9), and for object interfaces (Chapter 10). The final 
three chapters address advanced topics: memory management (Chapter 11), 
program control (Chapter 12), and assembly-language routines within Object Pascal 
programs (Chapter 13).

Using Object Pascal

The Object Pascal Language Guide is written to describe the Object Pascal language for 
use on either the Linux or Windows operating systems. Differences in the language 
relating to platform dependencies are noted where necessary.

Most Delphi/Kylix application developers write and compile their Object Pascal 
code in the integrated development environment (IDE). Working in the IDE allows 
the product to handle many details of setting up projects and source files, such as 
maintenance of dependency information among units. Borland products may enforce 
certain constraints on program organization that are not, strictly speaking, part of the 
Object Pascal language specification. For example, certain file- and program-naming 
conventions can be avoided if you write your programs outside of the IDE and 
compile them from the command prompt.
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This manual generally assumes that you are working in the IDE and that you are 
building applications that use the Visual Component Library (VCL) and/or the 
Borland Component Library for Cross Platform (CLX). Occasionally, however, 
Borland-specific rules are distinguished from rules that apply to all Object Pascal 
programming.

Typographical conventions

Identifiers—that is, names of constants, variables, types, fields, properties, 
procedures, functions, programs, units, libraries, and packages—appear in italics in 
the text. Object Pascal operators, reserved words, and directives are in boldface type. 
Example code and text that you would type literally (into a file or at the command 
prompt) are in monospaced type.

In displayed program listings, reserved words and directives appear in boldface, just 
as they do in the text:

function Calculate(X, Y: Integer): Integer;
begin

ƒ
end;

This is how the Code editor displays reserved words and directives, if you have the 
Syntax Highlight option turned on.

Some program listings, like the example above, contain ellipsis marks (... or ƒ). The 
ellipses represent additional code that would be included in an actual file. They are 
not meant to be copied literally.

In syntax descriptions, italics indicate placeholders for which, in real code, you would 
substitute syntactically valid constructions. For example, the heading of the function 
declaration above could be represented as

function functionName(argumentList): returnType;

Syntax descriptions can also contain ellipsis marks (...) and subscripts:

function functionName(arg1, ..., argn): ReturnType;

Other sources of information
The online Help system for your development tool provides information about the 
IDE and user interface as well as the most up-to-date reference material for the VCL 
and/or CLX. Many programming topics, such as database development, are covered 
in depth in the Developer’s Guide. For an overview of the documentation set, see the 
Quick Start manual that came with your software package.
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Software registration and technical support
Borland Software Corporation offers a range of support plans to fit the needs of 
individual developers, consultants, and corporations. To receive help with this 
product, return the registration card and select the plan that best suits your needs. 
For additional information about technical support and other Borland services, 
contact your local sales representative or visit us online at 
http://www.borland.com/.
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P a r t

I
Part IBasic language description

The chapters in Part I present the essential language elements required for most 
programming tasks. These chapters include:

• Chapter 2, “Overview”

• Chapter 3, “Programs and units”

• Chapter 4, “Syntactic elements”

• Chapter 5, “Data types, variables, and constants”

• Chapter 6, “Procedures and functions”

• Chapter 7, “Classes and objects”

• Chapter 8, “Standard routines and I/O”
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2
Chapter2Overview

Object Pascal is a high-level, compiled, strongly typed language that supports 
structured and object-oriented design. Its benefits include easy-to-read code, quick 
compilation, and the use of multiple unit files for modular programming.

Object Pascal has special features that support Borland’s component framework and 
RAD environment. For the most part, descriptions and examples in this manual 
assume that you are using Object Pascal to develop applications using Borland 
development tools such as Delphi or Kylix.

Program organization
Programs are usually divided into source-code modules called units. Each program 
begins with a heading, which specifies a name for the program. The heading is 
followed by an optional uses clause, then a block of declarations and statements. The 
uses clause lists units that are linked into the program; these units, which can be 
shared by different programs, often have uses clauses of their own.

The uses clause provides the compiler with information about dependencies among 
modules. Because this information is stored in the modules themselves, Object Pascal 
programs do not require makefiles, header files, or preprocessor “include” directives. 
(The Project Manager generates a makefile each time a project is loaded in the IDE, 
but saves these files only for project groups that include more than one project.)

For further discussion of program structure and dependencies, see Chapter 3, 
“Programs and units”.

Pascal source files

The compiler expects to find Pascal source code in files of three kinds:

• unit source files (which end with the .pas extension)
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• project files (which end with the .dpr extension)
• package source files (which end with the .dpk extension)

Unit source files contain most of the code in an application. Each application has a 
single project file and several unit files; the project file—which corresponds to the 
“main” program file in traditional Pascal—organizes the unit files into an 
application. Borland development tools automatically maintain a project file for each 
application.

If you are compiling a program from the command line, you can put all your source 
code into unit (.pas) files. But if you use the IDE to build your application, you must 
have a project (.dpr) file.

Package source files are similar to project files, but they are used to construct special 
dynamically linkable libraries called packages. For more information about packages, 
see Chapter 9, “Libraries and packages”.

Other files used to build applications

In addition to source-code modules, Borland products use several non-Pascal files to 
build applications. These files are maintained automatically and include

• form files, which end with the .dfm (Delphi) or .xfm (Kylix) extension,
• resource files, which end with the .res extension, and
• project options files, which end with the .dof (Delphi) or .kof (Kylix) extension.

A form file is either a text file or a compiled resource file that can contain bitmaps, 
strings, and so forth. Each form file represents a single form, which usually 
corresponds to a window or dialog box in an application. The IDE allows you to view 
and edit form files as text, and to save form files as either text or binary. Although the 
default behavior is to save form files as text, they are usually not edited manually; it 
is more common to use Borland’s visual design tools for this purpose. Each project 
has at least one form, and each form has an associated unit (.pas) file that, by default, 
has the same name as the form file.

In addition to form files, each project uses a resource (.res) file to hold the bitmap for 
the application’s icon. By default, this file has the same name as the project (.dpr) file. 
To change an application’s icon, use the Project Options dialog.

A project options (.dof or .kof) file contains compiler and linker settings, search 
directories, version information, and so forth. Each project has an associated project 
options file with the same name as the project (.dpr) file. Usually, the options in this 
file are set from Project Options dialog.

Various tools in the IDE store data in files of other types. Desktop settings (.dsk or 
.desk) files contain information about the arrangement of windows and other 
configuration options; desktop settings can be project-specific or environment-wide. 
These files have no direct effect on compilation.
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Compiler-generated files

The first time you build an application or a standard dynamic-link library, the 
compiler produces a compiled unit .dcu (Windows) .dcu/.dpu (Linux) file for each 
new unit used in your project; all the .dcu (Windows) .dcu/.dpu (Linux) files in your 
project are then linked to create a single executable or shared library file. The first 
time you build a package, the compiler produces a .dcu (Windows) .dpu (Linux) file 
for each new unit contained in the package, and then creates both a .dcp and a 
package file. (For more information about libraries and packages, see Chapter 9.) If 
you use the –GD switch, the linker generates a map file and a .drc file; the .drc file, 
which contains string resources, can be compiled into a resource file.

When you rebuild a project, individual units are not recompiled unless their source 
(.pas) files have changed since the last compilation, or their .dcu (Windows) .dcu/
.dpu (Linux) files cannot be found, or you explicitly tell the compiler to reprocess 
them. In fact, it is not necessary for a unit’s source file to be present at all, as long as 
the compiler can find the compiled unit file.

Example programs
The examples that follow illustrate basic features of Object Pascal programming. The 
examples show simple Object Pascal applications that cannot be compiled from the 
IDE; but you can compile them from the command line.

A simple console application

The program below is a simple console application that you can compile and run 
from the command prompt.

program Greeting;

{$APPTYPE CONSOLE}

var MyMessage: string;

begin
MyMessage := 'Hello world!';
Writeln(MyMessage);

end.

The first line declares a program called Greeting. The {$APPTYPE CONSOLE} directive tells 
the compiler that this is a console application, to be run from the command line. The 
next line declares a variable called MyMessage, which holds a string. (Object Pascal 
has genuine string data types.) The program then assigns the string “Hello world!” to 
the variable MyMessage, and sends the contents of MyMessage to the standard output 
using the Writeln procedure. (Writeln is defined implicitly in the System unit, which 
the compiler automatically includes in every application.)
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You can type this program into a file called Greeting.pas or Greeting.dpr and 
compile it by entering

On Delphi: DCC32 Greeting

On Kylix: dcc Greeting

on the command line. The resulting executable prints the message “Hello world!”

Aside from its simplicity, this example differs in several important ways from 
programs that you are likely to write with Borland development tools. First, it is a 
console application. Borland development tools are typically used to write 
applications with graphical interfaces; hence, you would not ordinarily call Writeln. 
Moreover, the entire example program (save for Writeln) is in a single file. In a typical 
application, the program heading—the first line of the example—would be placed in 
a separate project file that would not contain any of the actual application logic, other 
than a few calls to methods defined in unit files.

A more complicated example

The next example shows a program that is divided into two files: a project file and a 
unit file. The project file, which you can save as Greeting.dpr, looks like this:

program Greeting;

{$APPTYPE CONSOLE}

uses Unit1;

begin
PrintMessage('Hello World!');

end.

The first line declares a program called Greeting, which, once again, is a console 
application. The uses Unit1; clause tells the compiler that Greeting includes a unit 
called Unit1. Finally, the program calls the PrintMessage procedure, passing to it the 
string “Hello World!” Where does the PrintMessage procedure come from? It’s 
defined in Unit1. Here’s the source code for Unit1, which you can save in a file called 
Unit1.pas:

unit Unit1;

interface

procedure PrintMessage(msg: string);

implementation

procedure PrintMessage(msg: string);
begin

Writeln(msg);
end;

end.
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Unit1 defines a procedure called PrintMessage that takes a single string as an 
argument and sends the string to the standard output. (In Pascal, routines that do not 
return a value are called procedures. Routines that return a value are called functions.) 
Notice that PrintMessage is declared twice in Unit1. The first declaration, under the 
reserved word interface, makes PrintMessage available to other modules (such as 
Greeting) that use Unit1. The second declaration, under the reserved word 
implementation, actually defines PrintMessage.

You can now compile Greeting from the command line by entering

On Delphi: DCC32 Greeting

On Kylix: dcc Greeting

There’s no need to include Unit1 as a command-line argument. When the compiler 
processes Greeting.dpr, it automatically looks for unit files that the Greeting program 
depends on. The resulting executable does the same thing as our first example: it 
prints the message “Hello world!”

A native application

Our next example is an application built using VCL or CLX components in the IDE. 
This program uses automatically generated form and resource files, so you won’t be 
able to compile it from the source code alone. But it illustrates important features of 
Object Pascal. In addition to multiple units, the program uses classes and objects, 
which are discussed in Chapter 7, “Classes and objects”.

The program includes a project file and two new unit files. First, the project file:

program Greeting; { comments are enclosed in braces }

uses
Forms, {change the unit name to QForms on Linux}
Unit1 in ‘Unit1.pas’ { the unit for Form1 },
Unit2 in ‘Unit2.pas’ { the unit for Form2 };

{$R *.res} { this directive links the project's resource file }

begin
{ calls to Application }
Application.Initialize;
Application.CreateForm(TForm1, Form1);
Application.CreateForm(TForm2, Form2);
Application.Run;

end.

Once again, our program is called Greeting. It uses three units: Forms, which is part of 
VCL and CLX; Unit1, which is associated with the application’s main form (Form1); 
and Unit2, which is associated with another form (Form2).

The program makes a series of calls to an object named Application, which is an 
instance of the TApplication class defined in the Forms unit. (Every project has an 
automatically generated Application object.) Two of these calls invoke a TApplication 
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method named CreateForm. The first call to CreateForm creates Form1, an instance of 
the TForm1 class defined in Unit1. The second call to CreateForm creates Form2, an 
instance of the TForm2 class defined in Unit2.

Unit1 looks like this:

unit Unit1;

interface

uses { these units are part of the Visual Component Library (VCL) }
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls;

{
On Linux, the uses clause looks like this:
uses { these units are part of CLX }

SysUtils, Types, Classes, QGraphics, QControls, QForms, QDialogs;
}

type
TForm1 = class(TForm)

Button1: TButton;
procedure Button1Click(Sender: TObject);

end;

var
Form1: TForm1;

implementation

uses Unit2; { this is where Form2 is defined }

{$R *.dfm} { this directive links Unit1's form file }

procedure TForm1.Button1Click(Sender: TObject);
begin

Form2.ShowModal;
end;

end.

Unit1 creates a class named TForm1 (derived from TForm) and an instance of this 
class, Form1. TForm1 includes a button—Button1, an instance of TButton—and a 
procedure named TForm1.Button1Click that is called at runtime whenever the user 
presses Button1. TForm1.Button1Click hides Form1 and it displays Form2 (the call to 
Form2.ShowModal). Form2 is defined in Unit2:

unit Unit2;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, 
StdCtrls;
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{
On Linux, the uses clause looks like this:
uses { these units are part of CLX }

SysUtils, Types, Classes, QGraphics, QControls, QForms, QDialogs;
}
type

TForm2 = class(TForm)
Label1: TLabel;
CancelButton: TButton;
procedure CancelButtonClick(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

end;

var
Form2: TForm2;

implementation

uses Unit1;

{$R *.dfm}

procedure TForm2.CancelButtonClick(Sender: TObject);
begin

Form2.Close;
end;

end.

Unit2 creates a class named TForm2 and an instance of this class, Form2. TForm2 
includes a button (CancelButton, an instance of TButton) and a label (Label1, an 
instance of TLabel). You can’t see this from the source code, but Label1 displays a 
caption that reads “Hello world!” The caption is defined in Form2’s form file, 
Unit2.dfm.

Unit2 defines one procedure. TForm2.CancelButtonClick is called at runtime whenever 
the user presses CancelButton; it closes Form2. This procedure (along with Unit1’s 
TForm1.Button1Click) is known as an event handler because it responds to events that 
occur while the program is running. Event handlers are assigned to specific events by 
the form (.dfm on Windows .xfm on Linux) files for Form1 and Form2.

When the Greeting program starts, Form1 is displayed and Form2 is invisible. (By 
default, only the first form created in the project file is visible at runtime. This is 
called the project’s main form.) When the user presses the button on Form1, Form1 
disappears and is replaced by Form2, which displays the “Hello world!” greeting. 
When the user closes Form2 (by pressing CancelButton or the Close button on the title 
bar), Form1 reappears.
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A program is constructed from source-code modules called units. Each unit is stored 
in its own file and compiled separately; compiled units are linked to create an 
application. Units allow you to

• divide large programs into modules that can be edited separately.

• create libraries that you can share among programs.

• distribute libraries to other developers without making the source code available.

In traditional Pascal programming, all source code, including the main program, is 
stored in .pas files. Borland tools use a project (.dpr) file to store the “main” program, 
while most other source code resides in unit (.pas) files. Each application—or 
project—consists of a single project file and one or more unit files. (Strictly speaking, 
you needn’t explicitly use any units in a project, but all programs automatically use 
the System unit.) To build a project, the compiler needs either a source file or a 
compiled unit file for each unit.

Program structure and syntax
A program contains

• a program heading,

• a uses clause (optional), and

• a block of declarations and statements.

The program heading specifies a name for the program. The uses clause lists units 
used by the program. The block contains declarations and statements that are 
executed when the program runs. The IDE expects to find these three elements in a 
single project (.dpr) file.
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The example below shows the project file for a program called Editor.

1 program Editor;
2
3 uses
4 Forms, {change to QForms in Linux}
5 REAbout in 'REAbout.pas' {AboutBox},
6 REMain in 'REMain.pas' {MainForm};
7
8 {$R *.res}
9

10 begin
11 Application.Title := 'Text Editor';
12 Application.CreateForm(TMainForm, MainForm);
13 Application.Run;
14 end.

Line 1 contains the program heading. The uses clause is on lines 3 through 6. Line 8 is 
a compiler directive that links the project’s resource file into the program. Lines 10 
through 14 contain the block of statements that are executed when the program runs. 
Finally, the project file, like all source files, ends with a period.

This is, in fact, a fairly typical project file. Project files are usually short, since most of 
a program’s logic resides in its unit files. Project files are generated and maintained 
automatically, and it is seldom necessary to edit them manually.

The program heading

The program heading specifies the program’s name. It consists of the reserved word 
program, followed by a valid identifier, followed by a semicolon. The identifier must 
match the project file name. In the example above, since the program is called Editor, 
the project file should be called EDITOR.dpr.

In standard Pascal, a program heading can include parameters after the program 
name:

program Calc(input, output);

Borland’s Object Pascal compiler ignores these parameters.

The program uses clause

The uses clause lists units that are incorporated into the program. These units may in 
turn have uses clauses of their own. For more information about the uses clause, see 
“Unit references and the uses clause” on page 3-5.

The block

The block contains a simple or structured statement that is executed when the 
program runs. In most programs, the block consists of a compound statement—
bracketed between the reserved words begin and end—whose component 
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statements are simply method calls to the project’s Application object. (Every project 
has an Application variable that holds an instance of TApplication, TWebApplication, or 
TServiceApplication.) The block can also contain declarations of constants, types, 
variables, procedures, and functions; these declarations must precede the statement 
part of the block.

Unit structure and syntax
A unit consists of types (including classes), constants, variables, and routines 
(functions and procedures). Each unit is defined in its own unit (.pas) file.

A unit file begins with a unit heading, which is followed by the interface, 
implementation, initialization, and finalization sections. The initialization and 
finalization sections are optional. A skeleton unit file looks like this:

unit Unit1;

interface

uses { List of units goes here }

{ Interface section goes here }

implementation

uses { List of units goes here }

{ Implementation section goes here }

initialization
{ Initialization section goes here }

finalization
{ Finalization section goes here }

end.

The unit must conclude with the word end followed by a period.

The unit heading

The unit heading specifies the unit’s name. It consists of the reserved word unit, 
followed by a valid identifier, followed by a semicolon. For applications developed 
using Borland tools, the identifier must match the unit file name. Thus, the unit 
heading

unit MainForm;

would occur in a source file called MAINFORM.pas, and the file containing the 
compiled unit would be MAINFORM.dcu.
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Unit names must be unique within a project. Even if their unit files are in different 
directories, two units with the same name cannot be used in a single program.

The interface section

The interface section of a unit begins with the reserved word interface and continues 
until the beginning of the implementation section. The interface section declares 
constants, types, variables, procedures, and functions that are available to clients—
that is, to other units or programs that use the unit where they are declared. These 
entities are called public because a client can access them as if they were declared in 
the client itself.

The interface declaration of a procedure or function includes only the routine’s 
heading. The block of the procedure or function follows in the implementation 
section. Thus procedure and function declarations in the interface section work like 
forward declarations, although the forward directive isn’t used.

The interface declaration for a class must include declarations for all class members.

The interface section can include its own uses clause, which must appear 
immediately after the word interface. For information about the uses clause, see 
“Unit references and the uses clause” on page 3-5.

The implementation section

The implementation section of a unit begins with the reserved word implementation 
and continues until the beginning of the initialization section or, if there is no 
initialization section, until the end of the unit. The implementation section defines 
procedures and functions that are declared in the interface section. Within the 
implementation section, these procedures and functions may be defined and called in 
any order. You can omit parameter lists from public procedure and function 
headings when you define them in the implementation section; but if you include a 
parameter list, it must match the declaration in the interface section exactly.

In addition to definitions of public procedures and functions, the implementation 
section can declare constants, types (including classes), variables, procedures, and 
functions that are private to the unit—that is, inaccessible to clients.

The implementation section can include its own uses clause, which must appear 
immediately after the word implementation. For information about the uses clause, 
see “Unit references and the uses clause” on page 3-5.

The initialization section

The initialization section is optional. It begins with the reserved word initialization 
and continues until the beginning of the finalization section or, if there is no 
finalization section, until the end of the unit. The initialization section contains 
statements that are executed, in the order in which they appear, on program start-up. 
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So, for example, if you have defined data structures that need to be initialized, you 
can do this in the initialization section.

The initialization sections of units used by a client are executed in the order in which 
the units appear in the client’s uses clause.

The finalization section

The finalization section is optional and can appear only in units that have an 
initialization section. The finalization section begins with the reserved word 
finalization and continues until the end of the unit. It contains statements that are 
executed when the main program terminates. Use the finalization section to free 
resources that are allocated in the initialization section.

Finalization sections are executed in the opposite order from initializations. For 
example, if your application initializes units A, B, and C, in that order, it will finalize 
them in the order C, B, and A.

Once a unit’s initialization code starts to execute, the corresponding finalization 
section is guaranteed to execute when the application shuts down. The finalization 
section must therefore be able to handle incompletely initialized data, since, if a 
runtime error occurs, the initialization code might not execute completely.

Unit references and the uses clause
A uses clause lists units used by the program, library, or unit in which the clause 
appears. (For information about libraries, see Chapter 9, “Libraries and packages”.) 
A uses clause can occur in

• the project file for a program or library,

• the interface section of a unit, and

• the implementation section of a unit.

Most project files contain a uses clause, as do the interface sections of most units. The 
implementation section of a unit can contain its own uses clause as well.

The System unit is used automatically by every application and cannot be listed 
explicitly in the uses clause. (System implements routines for file I/O, string 
handling, floating point operations, dynamic memory allocation, and so forth.) Other 
standard library units, such as SysUtils, must be included in the uses clause. In most 
cases, all necessary units are placed in the uses clause when your project generates 
and maintains a source file.

In unit declarations and uses clauses (on Kylix particularly), unit names must match 
the file names in case. In other contexts (such as qualified identifiers), unit names are 
case insensitive. To avoid problems with unit references, refer to the unit source file 
explicitly:

uses MyUnit in "myunit.pas";
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If such an explicit reference appears in the project file, other source files can refer to 
the unit with a simple uses clause that does not need to match case:

uses Myunit;

For more information about the placement and content of the uses clause, see 
“Multiple and indirect unit references” on page 3-7 and “Circular unit references” on 
page 3-7.

The syntax of a uses clause

A uses clause consists of the reserved word uses, followed by one or more comma-
delimited unit names, followed by a semicolon. Examples:

uses Forms, Main;

uses Windows, Messages, SysUtils, Strings, Classes, Unit2, MyUnit;

uses SysUtils, Types, Classes, QGraphics, QControls, QForms, QDialogs;

In the uses clause of a program or library, any unit name may be followed by the 
reserved word in and the name of a source file, with or without a directory path, in 
single quotation marks; directory paths can be absolute or relative. Examples:

uses Windows, Messages, SysUtils, Strings in 'C:\Classes\Strings.pas', Classes;

uses
QForms,
Main,
Extra in '../extra/extra.pas';

Include in ... after a unit name when you need to specify the unit’s source file. Since 
the IDE expects unit names to match the names of the source files in which they 
reside, there is usually no reason to do this. Using in is necessary only when the 
location of the source file is unclear, for example when

• You have used a source file that is in a different directory from the project file, and 
that directory is not in the compiler’s search path or the general Library search 
path.

• Different directories in the compiler’s search path have identically named units.

• You are compiling a console application from the command line, and you have 
named a unit with an identifier that doesn’t match the name of its source file.

The compiler also relies on the in ... construction to determine which units are part of 
a project. Only units that appear in a project (.dpr) file’s uses clause followed by in 
and a file name are considered to be part of the project; other units in the uses clause 
are used by the project without belonging to it. This distinction has no effect on 
compilation, but it affects IDE tools like the Project Manager and Project Browser.

In the uses clause of a unit, you cannot use in to tell the compiler where to find a 
source file. Every unit must be in the compiler’s search path, the general Library 
search path, or the same directory as the unit that uses it. Moreover, unit names must 
match the names of their source files.
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Multiple and indirect unit references

The order in which units appear in the uses clause determines the order of their 
initialization (see “The initialization section” on page 3-4) and affects the way 
identifiers are located by the compiler. If two units declare a variable, constant, type, 
procedure, or function with the same name, the compiler uses the one from the unit 
listed last in the uses clause. (To access the identifier from the other unit, you would 
have to add a qualifier: UnitName.Identifier.)

A uses clause need include only units used directly by the program or unit in which 
the clause appears. That is, if unit A references constants, types, variables, 
procedures, or functions that are declared in unit B, then A must use B explicitly. If B 
in turn references identifiers from unit C, then A is indirectly dependent on C; in this 
case, C needn’t be included in a uses clause in A, but the compiler must still be able to 
find both B and C in order to process A.

The example below illustrates indirect dependency.

program Prog;
uses Unit2;
const a = b;
ƒ

unit Unit2;
interface
uses Unit1;
const b = c;
ƒ

unit Unit1;
interface
const c = 1;
ƒ

In this example, Prog depends directly on Unit2, which depends directly on Unit1. 
Hence Prog is indirectly dependent on Unit1. Because Unit1 does not appear in Prog’s 
uses clause, identifiers declared in Unit1 are not available to Prog.

To compile a client module, the compiler needs to locate all units that the client 
depends on, directly or indirectly. Unless the source code for these units has 
changed, however, the compiler needs only their .dcu (Windows) or .dcu/.dpu 
(Linux) files, not their source (.pas) files.

When changes are made in the interface section of a unit, other units that depend on 
it must be recompiled. But when changes are made only in the implementation or 
other sections of a unit, dependent units don’t have to be recompiled. The compiler 
tracks these dependencies automatically and recompiles units only when necessary.

Circular unit references

When units reference each other directly or indirectly, the units are said to be 
mutually dependent. Mutual dependencies are allowed as long as there are no 
circular paths connecting the uses clause of one interface section to the uses clause of 
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another. In other words, starting from the interface section of a unit, it must never be 
possible to return to that unit by following references through interface sections of 
other units. For a pattern of mutual dependencies to be valid, each circular reference 
path must lead through the uses clause of at least one implementation section.



P r o g r a m s  a n d  u n i t s 3-9

In the simplest case of two mutually dependent units, this means that the units 
cannot list each other in their interface uses clauses. So the following example leads 
to a compilation error:

unit Unit1;
interface
uses Unit2;
ƒ

unit Unit2;
interface
uses Unit1;
ƒ

However, the two units can legally reference each other if one of the references is 
moved to the implementation section:

unit Unit1;
interface
uses Unit2;
ƒ

unit Unit2;
interface
ƒ
implementation
uses Unit1;
ƒ

To reduce the chance of circular references, it’s a good idea to list units in the 
implementation uses clause whenever possible. Only when identifiers from another 
unit are used in the interface section is it necessary to list that unit in the interface 
uses clause.
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Object Pascal uses the ASCII character set, including the letters A through Z and a 
through z, the digits 0 through 9, and other standard characters. It is not case-
sensitive. The space character (ASCII 32) and the control characters (ASCII 0 through 
31—including ASCII 13, the return or end-of-line character) are called blanks.

Fundamental syntactic elements, called tokens, combine to form expressions, 
declarations, and statements. A statement describes an algorithmic action that can be 
executed within a program. An expression is a syntactic unit that occurs within a 
statement and denotes a value. A declaration defines an identifier (such as the name of 
a function or variable) that can be used in expressions and statements, and, where 
appropriate, allocates memory for the identifier.

Fundamental syntactic elements
On the simplest level, a program is a sequence of tokens delimited by separators. A 
token is the smallest meaningful unit of text in a program. A separator is either a blank 
or a comment. Strictly speaking, it is not always necessary to place a separator 
between two tokens; for example, the code fragment

Size:=20;Price:=10;

is perfectly legal. Convention and readability, however, dictate that we write this as

Size := 20;
Price := 10;

Tokens are categorized as special symbols, identifiers, reserved words, directives, numerals, 
labels, and character strings. A separator can be part of a token only if the token is a 
character string. Adjacent identifiers, reserved words, numerals, and labels must 
have one or more separators between them.
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Special symbols

Special symbols are non-alphanumeric characters, or pairs of such characters, that 
have fixed meanings. The following single characters are special symbols.

# $ & ' ( ) * + , – . / : ; < = > @ [ ] ^ { }

The following character pairs are also special symbols.

(* (. *) .) .. // := <= >= <>

The left bracket—[—is equivalent to the character pair of left parenthesis and 
period—(. ; the right bracket—]—is equivalent to the character pair of period and 
right parenthesis— .) . The left-parenthesis–plus–asterisk and asterisk–plus–right-
parenthesis—(* *)—are equivalent to the left and right brace— { } .

Notice that !, " (double quotation marks), %, ?, \, _ (underscore), | (pipe), and 
~ (tilde) are not special characters.

Identifiers

Identifiers denote constants, variables, fields, types, properties, procedures, 
functions, programs, units, libraries, and packages. An identifier can be of any 
length, but only the first 255 characters are significant. An identifier must begin with 
a letter or an underscore (_) and cannot contain spaces; letters, digits, and 
underscores are allowed after the first character. Reserved words cannot be used as 
identifiers.

Since Object Pascal is case-insensitive, an identifier like CalculateValue could be 
written in any of these ways:

CalculateValue
calculateValue
calculatevalue
CALCULATEVALUE

On Linux, the only identifiers for which case is important are unit names. Since unit 
names correspond to file names, inconsistencies in case can sometimes affect 
compilation.

Qualified identifiers
When you use an identifier that has been declared in more than one place, it is 
sometimes necessary to qualify the identifier. The syntax for a qualified identifier is

identifier1.identifier2

where identifier1 qualifies identifier2. For example, if two units each declare a variable 
called CurrentValue, you can specify that you want to access the CurrentValue in Unit2 
by writing

Unit2.CurrentValue

Qualifiers can be iterated. For example,

Form1.Button1.Click

calls the Click method in Button1 of Form1.
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If you don’t qualify an identifier, its interpretation is determined by the rules of scope 
described in “Blocks and scope” on page 4-27.

Reserved words

The following reserved words cannot be redefined or used as identifiers.

In addition to the words in Table 4.1, private, protected, public, published, and 
automated act as reserved words within object type declarations, but are otherwise 
treated as directives. The words at and on also have special meanings.

Directives

Directives are words that are sensitive in specific locations within source code. 
Directives have special meanings in Object Pascal, but, unlike reserved words, 
appear only in contexts where user-defined identifiers cannot occur. Hence—
although it is inadvisable to do so—you can define an identifier that looks exactly 
like a directive.

Table 4.1 Reserved words  

and downto in or string

array else inherited out then

as end initialization packed threadvar

asm except inline procedure to

begin exports interface program try

case file is property type

class finalization label raise unit

const finally library record until

constructor for mod repeat uses

destructor function nil resourcestring var

dispinterface goto not set while

div if object shl with

do implementation of shr xor

Table 4.2 Directives  

absolute dynamic message private resident

abstract export name protected safecall

assembler external near public stdcall

automated far nodefault published stored

cdecl forward overload read varargs

contains implements override readonly virtual

default index package register write

deprecated library pascal reintroduce writeonly

dispid local platform requires
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Numerals

Integer and real constants can be represented in decimal notation as sequences of 
digits without commas or spaces, and prefixed with the + or – operator to indicate 
sign. Values default to positive (so that, for example, 67258 is equivalent to +67258) and 
must be within the range of the largest predefined real or integer type.

Numerals with decimal points or exponents denote reals, while other numerals 
denote integers. When the character E or e occurs within a real, it means “times ten to 
the power of”. For example, 7E–2 means 7 × 10–2, and 12.25e+6 and 12.25e6 both mean 
12.25 × 106.

The dollar-sign prefix indicates a hexadecimal numeral—for example, $8F. 
Hexadecimal numbers without a preceding '-' unary operator are taken to be positive 
values. During an assignment, if a hexadecimal value lies outside the range of the 
receiving type an error is raised, except in the case of the Integer (32-bit Integer) 
where a warning is raised. In this case, values exceeding the positive range for 
Integer are taken to be negative numbers in a manner consistent with 2's complement 
integer representation.

For more information about real and integer types, see Chapter 5, “Data types, 
variables, and constants”. For information about the data types of numerals, see 
“True constants” on page 5-40.

Labels

A label is a standard Object Pascal identifier with the exception that, unlike other 
identifiers, labels can start with a digit. Numeric labels can include no more than ten 
digits—that is, a numeral between 0 and 9999999999.

Labels are used in goto statements. For more information about goto statements and 
labels, see “Goto statements” on page 4-18.

Character strings

A character string, also called a string literal or string constant, consists of a quoted 
string, a control string, or a combination of quoted and control strings. Separators can 
occur only within quoted strings.

A quoted string is a sequence of up to 255 characters from the extended ASCII 
character set, written on one line and enclosed by apostrophes. A quoted string with 
nothing between the apostrophes is a null string. Two sequential apostrophes in a 
quoted string denote a single character, namely an apostrophe. For example,

'BORLAND' { BORLAND }
'You''ll see' { You'll see }
'''' { ' }
'' { null string }
' ' { a space }



S y n t a c t i c  e l e m e n t s 4-5

C o m m e n t s  a n d  c o m p i l e r  d i r e c t i v e s

A control string is a sequence of one or more control characters, each of which consists 
of the # symbol followed by an unsigned integer constant from 0 to 255 (decimal or 
hexadecimal) and denotes the corresponding ASCII character. The control string

#89#111#117

is equivalent to the quoted string

'You'

You can combine quoted strings with control strings to form larger character strings. 
For example, you could use

'Line 1'#13#10'Line 2'

to put a carriage-return–line-feed between “Line 1” and “Line 2”. However, you 
cannot concatenate two quoted strings in this way, since a pair of sequential 
apostrophes is interpreted as a single character. (To concatenate quoted strings, use 
the + operator described in “String operators” on page 4-9, or simply combine them 
into a single quoted string.)

A character string’s length is the number of characters in the string. A character string 
of any length is compatible with any string type and with the PChar type. A character 
string of length 1 is compatible with any character type, and, when extended syntax 
is enabled ({$X+}), a character string of length n ≥ 1 is compatible with zero-based 
arrays and packed arrays of n characters. For more information about string types, 
see Chapter 5, “Data types, variables, and constants”.

Comments and compiler directives
Comments are ignored by the compiler, except when they function as separators 
(delimiting adjacent tokens) or compiler directives.

There are several ways to construct comments:

{ Text between a left brace and a right brace constitutes a comment. }

(* Text between a left-parenthesis-plus-asterisk and an 
asterisk-plus-right-parenthesis also constitutes a comment. *)

// Any text between a double-slash and the end of the line constitutes a comment.

A comment that contains a dollar sign ($) immediately after the opening { or (* is a 
compiler directive. For example,

{$WARNINGS OFF}

tells the compiler not to generate warning messages.

Expressions
An expression is a construction that returns a value. For example,

X { variable }
@X { address of a variable }
15 { integer constant }
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InterestRate { variable }
Calc(X,Y) { function call }
X * Y { product of X and Y }
Z / (1 - Z) { quotient of Z and (1 - Z) }
X = 1.5 { Boolean }
C in Range1 { Boolean }
not Done { negation of a Boolean }
['a','b','c'] { set }
Char(48) { value typecast }

The simplest expressions are variables and constants (described in Chapter 5, “Data 
types, variables, and constants”). More complex expressions are built from simpler 
ones using operators, function calls, set constructors, indexes, and typecasts.

Operators

Operators behave like predefined functions that are part of the Object Pascal 
language. For example, the expression (X + Y) is built from the variables X and Y—
called operands—with the + operator; when X and Y represent integers or reals, (X + Y) 
returns their sum. Operators include @, not, ^, *, /, div, mod, and, shl, shr, as, +, –, or, 
xor, =, >, <, <>, <=, >=, in, and is.

The operators @, not, and ^ are unary (taking one operand). All other operators are 
binary (taking two operands), except that + and – can function as either unary or 
binary. A unary operator always precedes its operand (for example, -B), except for ^, 
which follows its operand (for example, P^). A binary operator is placed between its 
operands (for example, A = 7).

Some operators behave differently depending on the type of data passed to them. For 
example, not performs bitwise negation on an integer operand and logical negation 
on a Boolean operand. Such operators appear below under multiple categories.

Except for ^, is, and in, all operators can take operands of type Variant. For details, 
see “Variant types” on page 5-31.

The sections that follow assume some familiarity with Object Pascal data types. For 
information about data types, see Chapter 5, “Data types, variables, and constants”.

For information about operator precedence in complex expressions, see “Operator 
precedence rules” on page 4-12.

Arithmetic operators
Arithmetic operators, which take real or integer operands, include +, –, *, /, div, and 
mod.

Table 4.3 Binary arithmetic operators

Operator Operation Operand types Result type Example

+ addition integer, real integer, real X + Y

– subtraction integer, real integer, real Result - 1

* multiplication integer, real integer, real P * InterestRate
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The following rules apply to arithmetic operators.

• The value of x/y is of type Extended, regardless of the types of x and y. For other 
arithmetic operators, the result is of type Extended whenever at least one operand 
is a real; otherwise, the result is of type Int64 when at least one operand is of type 
Int64; otherwise, the result is of type Integer. If an operand’s type is a subrange of 
an integer type, it is treated as if it were of the integer type.

• The value of x div y is the value of x/y rounded in the direction of zero to the 
nearest integer.

• The mod operator returns the remainder obtained by dividing its operands. In 
other words, x mod y = x – (x div y) * y.

• A runtime error occurs when y is zero in an expression of the form x/y, x div y, or 
x mod y.

Boolean operators
The Boolean operators not, and, or, and xor take operands of any Boolean type and 
return a value of type Boolean.

These operations are governed by standard rules of Boolean logic. For example, an 
expression of the form x and y is True if and only if both x and y are True.

Complete versus short-circuit Boolean evaluation
The compiler supports two modes of evaluation for the and and or operators: 
complete evaluation and short-circuit (partial) evaluation. Complete evaluation means 

/ real division integer, real real X / 2

div integer division integer integer Total div UnitSize

mod remainder integer integer Y mod 6

Table 4.4 Unary arithmetic operators

Operator Operation Operand type Result type Example

+ sign identity integer, real integer, real +7

– sign negation integer, real integer, real -X

Table 4.5 Boolean operators

Operator Operation Operand types Result type Example

not negation Boolean Boolean not (C in MySet)

and conjunction Boolean Boolean Done and (Total > 0)

or disjunction Boolean Boolean A or B

xor exclusive disjunction Boolean Boolean A xor B

Table 4.3 Binary arithmetic operators (continued)

Operator Operation Operand types Result type Example
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that each conjunct or disjunct is evaluated, even when the result of the entire 
expression is already determined. Short-circuit evaluation means strict left-to-right 
evaluation that stops as soon as the result of the entire expression is determined. For 
example, if the expression A and B is evaluated under short-circuit mode when A is 
False, the compiler won’t evaluate B; it knows that the entire expression is False as 
soon as it evaluates A.

Short-circuit evaluation is usually preferable because it guarantees minimum 
execution time and, in most cases, minimum code size. Complete evaluation is 
sometimes convenient when one operand is a function with side effects that alter the 
execution of the program.

Short-circuit evaluation also allows the use of constructions that might otherwise 
result in illegal runtime operations. For example, the following code iterates through 
the string S, up to the first comma.

while (I <= Length(S)) and (S[I] <> ',') do
begin

ƒ
Inc(I);

end;

In a case where S has no commas, the last iteration increments I to a value which is 
greater than the length of S. When the while condition is next tested, complete 
evaluation results in an attempt to read S[I], which could cause a runtime error. 
Under short-circuit evaluation, in contrast, the second part of the while condition—
(S[I] <> ',')— is not evaluated after the first part fails.

Use the $B compiler directive to control evaluation mode. The default state is {$B–}, 
which enables short-circuit evaluation. To enable complete evaluation locally, add 
the {$B+} directive to your code. You can also switch to complete evaluation on a 
project-wide basis by selecting Complete Boolean Evaluation in the Compiler 
Options dialog.

Note If either operand involves a variant, the compiler always performs complete 
evaluation (even in the {$B–} state).

Logical (bitwise) operators
The following logical operators perform bitwise manipulation on integer operands. 
For example, if the value stored in X (in binary) is 001101 and the value stored in Y is 
100001, the statement

Z := X or Y;

assigns the value 101101 to Z.

Table 4.6 Logical (bitwise) operators

Operator Operation Operand types Result type Examples

not bitwise negation integer integer not X

and bitwise and integer integer X and Y

or bitwise or integer integer X or Y

xor bitwise xor integer integer X xor Y
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The following rules apply to bitwise operators.

• The result of a not operation is of the same type as the operand.

• If the operands of an and, or, or xor operation are both integers, the result is of the 
predefined integer type with the smallest range that includes all possible values of 
both types.

• The operations x shl y and x shr y shift the value of x to the left or right by y bits, 
which is equivalent to multiplying or dividing x by 2y; the result is of the same 
type as x. For example, if N stores the value 01101 (decimal 13), then N shl 1 
returns 11010 (decimal 26). Note that the value of y is interpreted modulo the size 
of the type of x. Thus for example, if x is an integer, x shl 40 is interpreted as x shl 8 
because an integer is 32 bits and 40 mod 32 is 8.

String operators
The relational operators =, <>, <, >, <=, and >= all take string operands (see 
“Relational operators” on page 4-11). The + operator concatenates two strings.

The following rules apply to string concatenation.

• The operands for + can be strings, packed strings (packed arrays of type Char), or 
characters. However, if one operand is of type WideChar, the other operand must 
be a long string.

• The result of a + operation is compatible with any string type. However, if the 
operands are both short strings or characters, and their combined length is greater 
than 255, the result is truncated to the first 255 characters.

Pointer operators
The relational operators <, >, <=, and >= can take operands of type PChar (see 
“Relational operators” on page 4-11). The following operators also take pointers as 
operands. For more information about pointers, see “Pointers and pointer types” on 
page 5-25.

shl bitwise shift left integer integer X shl 2

shr bitwise shift right integer integer Y shr I

Table 4.7 String operators

Operator Operation Operand types Result type Example

+ concatenation string, packed string, character string S + '. '

Table 4.8 Character-pointer operators

Operator Operation Operand types Result type Example

+ pointer addition character pointer, integer character pointer P + I

- pointer subtraction character pointer, integer character pointer, integer P - Q

Table 4.6 Logical (bitwise) operators (continued)

Operator Operation Operand types Result type Examples
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The ^ operator dereferences a pointer. Its operand can be a pointer of any type except 
the generic Pointer, which must be typecast before dereferencing.

P = Q is True just in case P and Q point to the same address; otherwise, P <> Q is True.

You can use the + and – operators to increment and decrement the offset of a 
character pointer. You can also use – to calculate the difference between the offsets of 
two character pointers. The following rules apply.

• If I is an integer and P is a character pointer, then P + I adds I to the address given 
by P; that is, it returns a pointer to the address I characters after P. (The expression 
I + P is equivalent to P + I.) P – I subtracts I from the address given by P; that is, it 
returns a pointer to the address I characters before P.

• If P and Q are both character pointers, then P – Q computes the difference between 
the address given by P (the higher address) and the address given by Q (the lower 
address); that is, it returns an integer denoting the number of characters between P 
and Q. P + Q is not defined.

Set operators
The following operators take sets as operands.

The following rules apply to +, –, and *.

• An ordinal O is in X + Y if and only if O is in X or Y (or both). O is in X – Y if and 
only if O is in X but not in Y. O is in X * Y if and only if O is in both X and Y.

• The result of a +, –, or * operation is of the type set of A..B, where A is the smallest 
ordinal value in the result set and B is the largest.

The following rules apply to <=, >=, =, <>, and in.

^ pointer dereference pointer base type of pointer P^

= equality pointer Boolean P = Q

<> inequality pointer Boolean P <> Q

Table 4.9 Set operators

Operator Operation Operand types Result type Example

+ union set set Set1 + Set2

– difference set set S - T

* intersection set set S * T

<= subset set Boolean Q <= MySet

>= superset set Boolean S1 >= S2

= equality set Boolean S2 = MySet

<> inequality set Boolean MySet <> S1

in membership ordinal, set Boolean A in Set1

Table 4.8 Character-pointer operators (continued)

Operator Operation Operand types Result type Example
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• X <= Y is True just in case every member of X is a member of Y; Z >= W is 
equivalent to W <= Z. U = V is True just in case U and V contain exactly the same 
members; otherwise, U <> V is True.

• For an ordinal O and a set S, O in S is True just in case O is a member of S.

Relational operators
Relational operators are used to compare two operands. The operators =, <>, <=, and 
>= also apply to sets (see “Set operators” on page 4-10); = and <> also apply to 
pointers (see “Pointer operators” on page 4-9). 

For most simple types, comparison is straightforward. For example, I = J is True just 
in case I and J have the same value, and I <> J is True otherwise. The following rules 
apply to relational operators.

• Operands must be of compatible types, except that a real and an integer can be 
compared.

• Strings are compared according to the ordering of the extended ASCII character 
set. Character types are treated as strings of length 1.

• Two packed strings must have the same number of components to be compared. 
When a packed string with n components is compared to a string, the packed 
string is treated as a string of length n.

• The operators <, >, <=, and >= apply to PChar operands only if the two pointers 
point within the same character array.

• The operators = and <> can take operands of class and class-reference types. With 
operands of a class type, = and <> are evaluated according the rules that apply to 
pointers: C = D is True just in case C and D point to the same instance object, and C 
<> D is True otherwise. With operands of a class-reference type, C = D is True just 
in case C and D denote the same class, and C <> D is True otherwise. For more 
information about classes, see Chapter 7, “Classes and objects”.

Table 4.10 Relational operators

Operator Operation Operand types
Result 
type Example

= equality simple, class, class reference, interface, string, 
packed string

Boolean I = Max

<> inequality simple, class, class reference, interface, string, 
packed string

Boolean X <> Y

< less-than simple, string, packed string, PChar Boolean X < Y

> greater-than simple, string, packed string, PChar Boolean Len > 0

<= less-than-or-
equal-to

simple, string, packed string, PChar Boolean Cnt <= I

>= greater-than-
or-equal-to

simple, string, packed string, PChar Boolean I >= 1
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Class operators
The operators as and is take classes and instance objects as operands; as operates on 
interfaces as well. For more information, see Chapter 7, “Classes and objects” and 
Chapter 10, “Object interfaces”.

The relational operators = and <> also operate on classes. See “Relational operators” 
on page 4-11.

The @ operator
The @ operator returns the address of a variable, or of a function, procedure, or 
method; that is, @ constructs a pointer to its operand. For more information about 
pointers, see “Pointers and pointer types” on page 5-25. The following rules apply to 
@.

• If X is a variable, @X returns the address of X. (Special rules apply when X is a 
procedural variable; see “Procedural types in statements and expressions” on 
page 5-30.) The type of @X is Pointer if the default {$T–} compiler directive is in 
effect. In the {$T+} state, @X is of type ^T, where T is the type of X.

• If F is a routine (a function or procedure), @F returns F’s entry point. The type of 
@F is always Pointer.

• When @ is applied to a method defined in a class, the method identifier must be 
qualified with the class name. For example,

@TMyClass.DoSomething

points to the DoSomething method of TMyClass. For more information about 
classes and methods, see Chapter 7, “Classes and objects”.

Operator precedence rules
In complex expressions, rules of precedence determine the order in which operations 
are performed.

An operator with higher precedence is evaluated before an operator with lower 
precedence, while operators of equal precedence associate to the left. Hence the 
expression

X + Y * Z

multiplies Y times Z, then adds X to the result; * is performed first, because is has a 
higher precedence than +. But

X - Y + Z

Table 4.11 Precedence of operators

Operators Precedence

@, not first (highest)

*, /, div, mod, and, shl, shr, as second

+, –, or, xor third

=, <>, <, >, <=, >=, in, is fourth (lowest)
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first subtracts Y from X, then adds Z to the result; – and + have the same precedence, 
so the operation on the left is performed first.

You can use parentheses to override these precedence rules. An expression within 
parentheses is evaluated first, then treated as a single operand. For example,

(X + Y) * Z

multiplies Z times the sum of X and Y.

Parentheses are sometimes needed in situations where, at first glance, they seem not 
to be. For example, consider the expression

X = Y or X = Z

The intended interpretation of this is obviously

(X = Y) or (X = Z)

Without parentheses, however, the compiler follows operator precedence rules and 
reads it as

(X = (Y or X)) = Z

—which results in a compilation error unless Z is Boolean.

Parentheses often make code easier to write and to read, even when they are, strictly 
speaking, superfluous. Thus the first example above could be written as

X + (Y * Z)

Here the parentheses are unnecessary (to the compiler), but they spare both 
programmer and reader from having to think about operator precedence.

Function calls

Because functions return a value, function calls are expressions. For example, if 
you’ve defined a function called Calc that takes two integer arguments and returns an 
integer, then the function call Calc(24, 47) is an integer expression. If I and J are 
integer variables, then I + Calc(J, 8) is also an integer expression. Examples of 
function calls include

Sum(A, 63)
Maximum(147, J)
Sin(X + Y)
Eof(F)
Volume(Radius, Height)
GetValue
TSomeObject.SomeMethod(I,J);

For more information about functions, see Chapter 6, “Procedures and functions”.

Set constructors

A set constructor denotes a set-type value. For example,

[5, 6, 7, 8]
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denotes the set whose members are 5, 6, 7, and 8. The set constructor

[ 5..8 ]

could also denote the same set.

The syntax for a set constructor is

[ item1, ..., itemn ]

where each item is either an expression denoting an ordinal of the set’s base type or a 
pair of such expressions with two dots (..) in between. When an item has the form x..y, 
it is shorthand for all the ordinals in the range from x to y, inclusive; but if x is greater 
than y, then x..y denotes nothing and [x..y] is the empty set. The set constructor [ ] 
denotes the empty set, while [x] denotes the set whose only member is the value of x.

Examples of set constructors:

[red, green, MyColor]
[1, 5, 10..K mod 12, 23]
['A'..'Z', 'a'..'z', Chr(Digit + 48)]

For more information about sets, see “Sets” on page 5-17.

Indexes

Strings, arrays, array properties, and pointers to strings or arrays can be indexed. For 
example, if FileName is a string variable, the expression FileName[3] returns the third 
character in the string denoted by FileName, while FileName[I + 1] returns the 
character immediately after the one indexed by I. For information about strings, see 
“String types” on page 5-10. For information about arrays and array properties, see 
“Arrays” on page 5-18 and “Array properties” on page 7-19.

Typecasts

It is sometimes useful to treat an expression as if it belonged to different type. A 
typecast allows you to do this by, in effect, temporarily changing an expression’s 
type. For example, Integer('A') casts the character A as an integer.

The syntax for a typecast is

typeIdentifier(expression)

If the expression is a variable, the result is called a variable typecast; otherwise, the 
result is a value typecast. While their syntax is the same, different rules apply to the 
two kinds of typecast.

Value typecasts
In a value typecast, the type identifier and the cast expression must both be ordinal or 
pointer types. Examples of value typecasts include

Integer('A')
Char(48)
Boolean(0)
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Color(2)
Longint(@Buffer)

The resulting value is obtained by converting the expression in parentheses. This 
may involve truncation or extension if the size of the specified type differs from that 
of the expression. The expression’s sign is always preserved.

The statement

I := Integer('A');

assigns the value of Integer('A')—that is, 65—to the variable I.

A value typecast cannot be followed by qualifiers and cannot appear on the left side 
of an assignment statement.

Variable typecasts
You can cast any variable to any type, provided their sizes are the same and you do 
not mix integers with reals. (To convert numeric types, rely on standard functions 
like Int and Trunc.) Examples of variable typecasts include

Char(I)
Boolean(Count)
TSomeDefinedType(MyVariable)

Variable typecasts can appear on either side of an assignment statement. Thus

var MyChar: char;
ƒ
Shortint(MyChar) := 122;

assigns the character z (ASCII 122) to MyChar.

You can cast variables to a procedural type. For example, given the declarations

type Func = function(X: Integer): Integer;
var

F: Func;
P: Pointer;
N: Integer;

you can make the following assignments.

F := Func(P); { Assign procedural value in P to F }
Func(P) := F; { Assign procedural value in F to P }
@F := P; { Assign pointer value in P to F }
P := @F; { Assign pointer value in F to P }
N := F(N); { Call function via F }
N := Func(P)(N); { Call function via P }

Variable typecasts can also be followed by qualifiers, as illustrated in the following 
example.

type
TByteRec = record

Lo, Hi: Byte;
end;
TWordRec = record

Low, High: Word;
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end;
PByte = ^Byte;

var
B: Byte;
W: Word;
L: Longint;
P: Pointer;

begin
W := $1234;
B := TByteRec(W).Lo;
TByteRec(W).Hi := 0;
L := $01234567;
W := TWordRec(L).Low;
B := TByteRec(TWordRec(L).Low).Hi;
B := PByte(L)^;

end;

In this example, TByteRec is used to access the low- and high-order bytes of a word, 
and TWordRec to access the low- and high-order words of a long integer. You could 
call the predefined functions Lo and Hi for the same purpose, but a variable typecast 
has the advantage that it can be used on the left side of an assignment statement.

For information about typecasting pointers, see “Pointers and pointer types” on 
page 5-25. For information about casting class and interface types, see “The as 
operator” on page 7-25 and “Interface typecasts” on page 10-10.

Declarations and statements
Aside from the uses clause (and reserved words like implementation that demarcate 
parts of a unit), a program consists entirely of declarations and statements, which are 
organized into blocks.

Declarations

The names of variables, constants, types, fields, properties, procedures, functions, 
programs, units, libraries, and packages are called identifiers. (Numeric constants like 
26057 are not identifiers.) Identifiers must be declared before you can use them; the 
only exceptions are a few predefined types, routines, and constants that the compiler 
understands automatically, the variable Result when it occurs inside a function block, 
and the variable Self when it occurs inside a method implementation.

A declaration defines an identifier and, where appropriate, allocates memory for it. 
For example,

var Size: Extended;

declares a variable called Size that holds an Extended (real) value, while

function DoThis(X, Y: string): Integer;

declares a function called DoThis that takes two strings as arguments and returns an 
integer. Each declaration ends with a semicolon. When you declare several variables, 
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constants, types, or labels at the same time, you need only write the appropriate 
reserved word once:

var
Size: Extended;
Quantity: Integer;
Description: string;

The syntax and placement of a declaration depend on the kind of identifier you are 
defining. In general, declarations can occur only at the beginning of a block or at the 
beginning of the interface or implementation section of a unit (after the uses clause). 
Specific conventions for declaring variables, constants, types, functions, and so forth 
are explained in the chapters on those topics.

The “hint” directives platform, deprecated, and library may be appended to any 
declaration. In the case of a procedure or function declaration, the hint directive 
should be separated from the rest of the declaration with a semicolon. Examples:

procedure SomeOldRoutine; stdcall; deprecated;

var VersionNumber: Real library;

type AppError = class(Exception)
ƒ

end platform;

When source code is compiled in the {$HINTS ON} {$WARNINGS ON} state, each 
reference to an identifier declared with one of these directives generates an 
appropriate hint or warning. Use platform to mark items that are specific to a 
particular operating environment (such as Windows or Linux), deprecated to 
indicate that an item is obsolete or supported only for backward compatibility, and 
library to flag dependencies on a particular library or component framework (such 
as VCL or CLX).

Statements

Statements define algorithmic actions within a program. Simple statements—like 
assignments and procedure calls—can combine to form loops, conditional 
statements, and other structured statements.

Multiple statements within a block, and in the initialization or finalization section of 
a unit, are separated by semicolons.

Simple statements

A simple statement doesn’t contain any other statements. Simple statements include 
assignments, calls to procedures and functions, and goto jumps.

Assignment statements
An assignment statement has the form

variable := expression



4-18 O b j e c t  P a s c a l  L a n g u a g e  G u i d e

D e c l a r a t i o n s  a n d  s t a t e m e n t s

where variable is any variable reference—including a variable, variable typecast, 
dereferenced pointer, or component of a structured variable—and expression is any 
assignment-compatible expression. (Within a function block, variable can be replaced 
with the name of the function being defined. See Chapter 6, “Procedures and 
functions”.) The := symbol is sometimes called the assignment operator.

An assignment statement replaces the current value of variable with the value of 
expression. For example,

I := 3;

assigns the value 3 to the variable I. The variable reference on the left side of the 
assignment can appear in the expression on the right. For example,

I := I + 1;

increments the value of I. Other assignment statements include

X := Y + Z;
Done := (I >= 1) and (I < 100);
Hue1 := [Blue, Succ(C)];
I := Sqr(J) - I  * K;
Shortint(MyChar) := 122;
TByteRec(W).Hi := 0;
MyString[I] := 'A';
SomeArray[I + 1] := P^;
TMyObject.SomeProperty := True;

Procedure and function calls
A procedure call consists of the name of a procedure (with or without qualifiers), 
followed by a parameter list (if required). Examples include

PrintHeading;
Transpose(A, N, M);
Find(Smith, William);
Writeln('Hello world!');
DoSomething();
Unit1.SomeProcedure;
TMyObject.SomeMethod(X,Y);

With extended syntax enabled ({$X+}), function calls, like calls to procedures, can be 
treated as statements in their own right:

MyFunction(X);

When you use a function call in this way, its return value is discarded.

For more information about procedures and functions, see Chapter 6, “Procedures 
and functions”.

Goto statements
A goto statement, which has the form

goto label
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transfers program execution to the statement marked by the specified label. To mark 
a statement, you must first declare the label. Then precede the statement you want to 
mark with the label and a colon:

label: statement

Declare labels like this:

label label;

You can declare several labels at once:

label label1, ..., labeln;

A label can be any valid identifier or any numeral between 0 and 9999.

The label declaration, marked statement, and goto statement must belong to the same 
block. (See “Blocks and scope” on page 4-27.) Hence it is not possible to jump into or 
out of a procedure or function. Do not mark more than one statement in a block with 
the same label.

For example,

label StartHere;
ƒ
StartHere: Beep;
goto StartHere;

creates an infinite loop that calls the Beep procedure repeatedly.

The goto statement is generally discouraged in structured programming. It is, 
however, sometimes used as a way of exiting from nested loops, as in the following 
example.

procedure FindFirstAnswer;
var X, Y, Z, Count: Integer;
label FoundAnAnswer;
begin

Count := SomeConstant;
for X := 1 to Count do

for Y := 1 to Count do
for Z := 1 to Count do
if ... { some condition holds on X, Y, and Z } then

goto FoundAnAnswer;

ƒ {code to execute if no answer is found }
Exit;

FoundAnAnswer:
ƒ { code to execute when an answer is found }

end;

Notice that we are using goto to jump out of a nested loop. Never jump into a loop or 
other structured statement, since this can have unpredictable effects.
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Structured statements

Structured statements are built from other statements. Use a structured statement 
when you want to execute other statements sequentially, conditionally, or 
repeatedly.

• A compound or with statement simply executes a sequence of constituent 
statements.

• A conditional statement—that is, an if or case statement—executes at most one of 
its constituents, depending on specified criteria.

• Loop statements—including repeat, while, and for loops—execute a sequence of 
constituent statements repeatedly.

• A special group of statements—including raise, try...except, and try...finally 
constructions—create and handle exceptions. For information about exception 
generation and handling, see “Exceptions” on page 7-26.

Compound statements
A compound statement is a sequence of other (simple or structured) statements to be 
executed in the order in which they are written. The compound statement is 
bracketed by the reserved words begin and end, and its constituent statements are 
separated by semicolons. For example:

begin
Z := X;
X := Y;
Y := Z;

end;

The last semicolon before end is optional. So we could have written this as

begin
Z := X;
X := Y;
Y := Z

end;

Compound statements are essential in contexts where Object Pascal syntax requires a 
single statement. In addition to program, function, and procedure blocks, they occur 
within other structured statements, such as conditionals or loops. For example:

begin
I := SomeConstant;
while I > 0 do
begin

ƒ
I := I - 1;

end;
end;

You can write a compound statement that contains only a single constituent 
statement; like parentheses in a complex term, begin and end sometimes serve to 
disambiguate and to improve readability. You can also use an empty compound 
statement to create a block that does nothing:
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begin
end;

With statements
A with statement is a shorthand for referencing the fields of a record or the fields, 
properties, and methods of an object. The syntax of a with statement is

with obj do statement

or

with obj1, ..., objn do statement

where obj is a variable reference denoting an object or record, and statement is any 
simple or structured statement. Within statement, you can refer to fields, properties, 
and methods of obj using their identifiers alone—without qualifiers.

For example, given the declarations

type TDate = record
Day: Integer;
Month: Integer;
Year: Integer;

end;

var OrderDate: TDate;

you could write the following with statement.

with OrderDate do
if Month = 12 then
begin

Month := 1;
Year := Year + 1;

end
else

Month := Month + 1;

This is equivalent to

if OrderDate.Month = 12 then
begin

OrderDate.Month := 1;
OrderDate.Year := OrderDate.Year + 1;

end
else

OrderDate.Month := OrderDate.Month + 1;

If the interpretation of obj involves indexing arrays or dereferencing pointers, these 
actions are performed once, before statement is executed. This makes with statements 
efficient as well as concise. It also means that assignments to a variable within 
statement cannot affect the interpretation of obj during the current execution of the 
with statement.

Each variable reference or method name in a with statement is interpreted, if 
possible, as a member of the specified object or record. If there is another variable or 
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method of the same name that you want to access from the with statement, you need 
to prepend it with a qualifier, as in the following example.

with OrderDate do
begin

Year := Unit1.Year
ƒ

end;

When multiple objects or records appear after with, the entire statement is treated 
like a series of nested with statements. Thus

with obj1, obj2, ..., objn do statement

is equivalent to

with obj1 do
with obj2 do

ƒ

with objn do
statement

In this case, each variable reference or method name in statement is interpreted, if 
possible, as a member of objn; otherwise it is interpreted, if possible, as a member of 
objn–1; and so forth. The same rule applies to interpreting the objs themselves, so that, 
for instance, if objn is a member of both obj1 and obj2, it is interpreted as obj2.objn.

If statements
There are two forms of if statement: if...then and the if...then...else. The syntax of an 
if...then statement is

if expression then statement

where expression returns a Boolean value. If expression is True, then statement is 
executed; otherwise it is not. For example,

if J <> 0 then Result := I/J;

The syntax of an if...then...else statement is

if expression then statement1 else statement2

where expression returns a Boolean value. If expression is True, then statement1 is 
executed; otherwise statement2 is executed. For example,

if J = 0 then
Exit

else
Result := I/J;

The then and else clauses contain one statement each, but it can be a structured 
statement. For example,

if J <> 0 then
begin

Result := I/J;
Count := Count + 1;

end



S y n t a c t i c  e l e m e n t s 4-23

D e c l a r a t i o n s  a n d  s t a t e m e n t s

else if Count = Last then
Done := True

else
Exit;

Notice that there is never a semicolon between the then clause and the word else. 
You can place a semicolon after an entire if statement to separate it from the next 
statement in its block, but the then and else clauses require nothing more than a 
space or carriage return between them. Placing a semicolon immediately before else 
(in an if statement) is a common programming error.

A special difficulty arises in connection with nested if statements. The problem arises 
because some if statements have else clauses while others do not, but the syntax for 
the two kinds of statement is otherwise the same. In a series of nested conditionals 
where there are fewer else clauses than if statements, it may not seem clear which 
else clauses are bound to which ifs. Consider a statement of the form

if expression1 then if expression2 then statement1 else statement2;

There would appear to be two ways to parse this:

if expression1 then [ if expression2 then statement1 else statement2 ];

if expression1 then [ if expression2 then statement1 ] else statement2;

The compiler always parses in the first way. That is, in real code, the statement

if ... { expression1 } then
if ... { expression2 } then

... { statement1 }
else

... { statement2 } ;

is equivalent to

if ... { expression1 } then
begin

if ... { expression2 } then
... { statement1 }

else
... { statement2 } 

end;

The rule is that nested conditionals are parsed starting from the innermost 
conditional, with each else bound to the nearest available if on its left. To force the 
compiler to read our example in the second way, you would have to write it 
explicitly as

if ... { expression1 } then
begin

if ... { expression2 } then
... { statement1 }

end
else

... { statement2 } ;
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Case statements
The case statement provides a readable alternative to complex nested if conditionals. 
A case statement has the form

case selectorExpression of
caseList1: statement1;
ƒ
caseListn: statementn;

end

where selectorExpression is any expression of an ordinal type (string types are invalid) 
and each caseList is one of the following:

• A numeral, declared constant, or other expression that the compiler can evaluate 
without executing your program. It must be of an ordinal type compatible with 
selectorExpression. Thus 7, True, 4 + 5 * 3, 'A', and Integer('A') can all be used as 
caseLists, but variables and most function calls cannot. (A few built-in functions 
like Hi and Lo can occur in a caseList. See “Constant expressions” on page 5-41.)

• A subrange having the form First..Last, where First and Last both satisfy the 
criterion above and First is less than or equal to Last.

• A list having the form item1, ..., itemn, where each item satisfies one of the criteria 
above.

Each value represented by a caseList must be unique in the case statement; subranges 
and lists cannot overlap. A case statement can have a final else clause:

case selectorExpression of
caseList1: statement1;
ƒ
caseListn: statementn;

else
statements;

end

where statements is a semicolon-delimited sequence of statements. When a case 
statement is executed, at most one of statement1 ... statementn is executed. Whichever 
caseList has a value equal to that of selectorExpression determines the statement to be 
used. If none of the caseLists has the same value as selectorExpression, then the 
statements in the else clause (if there is one) are executed.

The case statement

case I of
1..5: Caption := 'Low';
6..9: Caption := 'High';
0, 10..99: Caption := 'Out of range';

else
Caption := '';

end;

is equivalent to the nested conditional

if I in [1..5] then
Caption := 'Low'



S y n t a c t i c  e l e m e n t s 4-25

D e c l a r a t i o n s  a n d  s t a t e m e n t s

else if I in [6..10] then
Caption := 'High'
else if (I = 0) or (I in [10..99]) then

Caption := 'Out of range'
else
Caption := '';

Other examples of case statements:

case MyColor of
Red: X := 1;
Green: X := 2;
Blue: X := 3;
Yellow, Orange, Black: X := 0;

end;

case Selection of
Done: Form1.Close;
Compute: CalculateTotal(UnitCost, Quantity);

else
Beep;

end;

Control loops
Loops allow you to execute a sequence of statements repeatedly, using a control 
condition or variable to determine when the execution stops. Object Pascal has three 
kinds of control loop: repeat statements, while statements, and for statements.

You can use the standard Break and Continue procedures to control the flow of a 
repeat, while, or for statement. Break terminates the statement in which it occurs, 
while Continue begins executing the next iteration of the sequence. For more 
information about these procedures, see the online Help.

Repeat statements
The syntax of a repeat statement is

repeat statement1; ...; statementn; until expression

where expression returns a Boolean value. (The last semicolon before until is 
optional.) The repeat statement executes its sequence of constituent statements 
continually, testing expression after each iteration. When expression returns True, the 
repeat statement terminates. The sequence is always executed at least once because 
expression is not evaluated until after the first iteration.

Examples of repeat statements include

repeat
K := I mod J;
I := J;
J := K;

until J = 0;

repeat
Write('Enter a value (0..9): ');
Readln(I);

until (I >= 0) and (I <= 9);
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While statements
A while statement is similar to a repeat statement, except that the control condition is 
evaluated before the first execution of the statement sequence. Hence, if the condition 
is false, the statement sequence is never executed.

The syntax of a while statement is

while expression do statement

where expression returns a Boolean value and statement can be a compound statement. 
The while statement executes its constituent statement repeatedly, testing expression 
before each iteration. As long as expression returns True, execution continues.

Examples of while statements include

while Data[I] <> X do I := I + 1;

while I > 0 do
begin

if Odd(I) then Z := Z * X;
I := I div 2;
X := Sqr(X);

end;

while not Eof(InputFile) do
begin

Readln(InputFile, Line);
Process(Line);

end;

For statements
A for statement, unlike a repeat or while statement, requires you to specify explicitly 
the number of iterations you want the loop to go through. The syntax of a for 
statement is

for counter := initialValue to finalValue do statement

or

for counter := initialValue downto finalValue do statement

where

• counter is a local variable (declared in the block containing the for statement) of 
ordinal type, without any qualifiers.

• initialValue and finalValue are expressions that are assignment-compatible with 
counter.

• statement is a simple or structured statement that does not change the value of 
counter.

The for statement assigns the value of initialValue to counter, then executes statement 
repeatedly, incrementing or decrementing counter after each iteration. (The for...to 
syntax increments counter, while the for...downto syntax decrements it.) When 
counter returns the same value as finalValue, statement is executed once more and the 
for statement terminates. In other words, statement is executed once for every value 
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in the range from initialValue to finalValue. If initialValue is equal to finalValue, 
statement is executed exactly once. If initialValue is greater than finalValue in a for...to 
statement, or less than finalValue in a for...downto statement, then statement is never 
executed. After the for statement terminates, the value of counter is undefined.

For purposes of controlling execution of the loop, the expressions initialValue and 
finalValue are evaluated only once, before the loop begins. Hence the for...to 
statement is almost, but not quite, equivalent to this while construction:

begin
counter := initialValue;
while counter <= finalValue do
begin

statement;
counter := Succ(counter);

end;
end

The difference between this construction and the for...to statement is that the while 
loop reevaluates finalValue before each iteration. This can result in noticeably slower 
performance if finalValue is a complex expression, and it also means that changes to 
the value of finalValue within statement can affect execution of the loop.

Examples of for statements:

for I := 2 to 63 do
if Data[I] > Max then

Max := Data[I];

for I := ListBox1.Items.Count - 1 downto 0 do
ListBox1.Items[I] := UpperCase(ListBox1.Items[I]);

for I := 1 to 10 do
for J := 1 to 10 do
begin

X := 0;
for K := 1 to 10 do

X := X + Mat1[I, K] * Mat2[K, J];
Mat[I, J] := X;

end;

for C := Red to Blue do Check(C);

Blocks and scope
Declarations and statements are organized into blocks, which define local namespaces 
(or scopes) for labels and identifiers. Blocks allow a single identifier, such as a variable 
name, to have different meanings in different parts of a program. Each block is part 
of the declaration of a program, function, or procedure; each program, function, or 
procedure declaration has one block.
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Blocks

A block consists of a series of declarations followed by a compound statement. All 
declarations must occur together at the beginning of the block. So the form of a block 
is

declarations
begin

statements
end

The declarations section can include, in any order, declarations for variables, constants 
(including resource strings), types, procedures, functions, and labels. In a program 
block, the declarations section can also include one or more exports clauses (see 
Chapter 9, “Libraries and packages”).

For example, in a function declaration like

function UpperCase(const S: string): string;
var

Ch: Char;
L: Integer;
Source, Dest: PChar;

begin
ƒ

end;

the first line of the declaration is the function heading and all of the succeeding lines 
make up the block. Ch, L, Source, and Dest are local variables; their declarations apply 
only to the UpperCase function block and override—in this block only—any 
declarations of the same identifiers that may occur in the program block or in the 
interface or implementation section of a unit.

Scope

An identifier, such as a variable or function name, can be used only within the scope 
of its declaration. The location of a declaration determines its scope. An identifier 
declared within the declaration of a program, function, or procedure has a scope 
limited to the block in which it is declared. An identifier declared in the interface 
section of a unit has a scope that includes any other units or programs that use the 
unit where the declaration occurs. Identifiers with narrower scope—especially 
identifiers declared in functions and procedures—are sometimes called local, while 
identifiers with wider scope are called global.
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The rules that determine identifier scope are summarized below.

Naming conflicts
When one block encloses another, the former is called the outer block and the latter the 
inner block. If an identifier declared in an outer block is redeclared in an inner block, 
the inner declaration overrides the outer one and determines the meaning of the 
identifier for the duration of the inner block. For example, if you declare a variable 
called MaxValue in the interface section of a unit, and then declare another variable 
with the same name in a function declaration within that unit, any unqualified 
occurrences of MaxValue in the function block are governed by the second, local 
declaration. Similarly, a function declared within another function creates a new, 
inner scope in which identifiers used by the outer function can be redeclared locally.

The use of multiple units further complicates the definition of scope. Each unit listed 
in a uses clause imposes a new scope that encloses the remaining units used and the 
program or unit containing the uses clause. The first unit in a uses clause represents 
the outermost scope and each succeeding unit represents a new scope inside the 
previous one. If two or more units declare the same identifier in their interface 
sections, an unqualified reference to the identifier selects the declaration in the 
innermost scope—that is, in the unit where the reference itself occurs, or, if that unit 
doesn’t declare the identifier, in the last unit in the uses clause that does declare the 
identifier.

The System unit is used automatically by every program or unit. The declarations in 
System, along with the predefined types, routines, and constants that the compiler 
understands automatically, always have the outermost scope.

You can override these rules of scope and bypass an inner declaration by using a 
qualified identifier (see “Qualified identifiers” on page 4-2) or a with statement (see 
“With statements” on page 4-21).

If the identifier is declared in ... its scope extends ...

the declaration of a program, function, or 
procedure

from the point where it is declared to the end of 
the current block, including all blocks enclosed 
within that scope.

the interface section of a unit from the point where it is declared to the end of 
the unit, and to any other unit or program that 
uses that unit. (See Chapter 3, “Programs and 
units”.)

the implementation section of a unit, but not 
within the block of any function or procedure

from the point where it is declared to the end of 
the unit. The identifier is available to any 
function or procedure in the unit, including the 
initialization and finalization sections, if present.

the definition of a record type (that is, the 
identifier is the name of a field in the record)

from the point of its declaration to the end of the 
record-type definition. (See “Records” on 
page 5-21.)

the definition of a class (that is, the identifier is 
the name of a data field property or method in 
the class)

from the point of its declaration to the end of the 
class-type definition, and also includes 
descendants of the class and the blocks of all 
methods in the class and its descendants. (See 
Chapter 7, “Classes and objects”.)
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C h a p t e r

5
Chapter5Data types, variables, and constants

A type is essentially a name for a kind of data. When you declare a variable you must 
specify its type, which determines the set of values the variable can hold and the 
operations that can be performed on it. Every expression returns data of a particular 
type, as does every function. Most functions and procedures require parameters of 
specific types.

Object Pascal is a “strongly typed” language, which means that it distinguishes a 
variety of data types and does not always allow you to substitute one type for 
another. This is usually beneficial because it lets the compiler treat data intelligently 
and validate your code more thoroughly, preventing hard-to-diagnose runtime 
errors. When you need greater flexibility, however, there are mechanisms to 
circumvent strong typing. These include typecasting (see “Typecasts” on page 4-14), 
pointers (see “Pointers and pointer types” on page 5-25), variants (see “Variant types” 
on page 5-31), variant parts in records (see “Variant parts in records” on page 5-23), 
and absolute addressing of variables (see “Absolute addresses” on page 5-39).

About types
There are several ways to categorize Object Pascal data types:

• Some types are predefined (or built-in); the compiler recognizes these automatically, 
without the need for a declaration. Almost all of the types documented in this 
language reference are predefined. Other types are created by declaration; these 
include user-defined types and the types defined in the product libraries.

• Types can be classified as either fundamental or generic. The range and format of a 
fundamental type is the same in all implementations of Object Pascal, regardless 
of the underlying CPU and operating system. The range and format of a generic 
type is platform-specific and could vary across different implementations. Most 
predefined types are fundamental, but a handful of integer, character, string, and 
pointer types are generic. It’s a good idea to use generic types when possible, since 
they provide optimal performance and portability. However, changes in storage 
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format from one implementation of a generic type to the next could cause 
compatibility problems—for example, if you are streaming data to a file.

• Types can be classified as simple, string, structured, pointer, procedural, or variant. In 
addition, type identifiers themselves can be regarded as belonging to a special 
“type” because they can be passed as parameters to certain functions (such as 
High, Low, and SizeOf).

The outline below shows the taxonomy of Object Pascal data types.

simple
ordinal

integer
character
Boolean
enumerated
subrange

real
string
structured

set
array
record
file
class
class reference
interface

pointer
procedural
variant
type identifier

The standard function SizeOf operates on all variables and type identifiers. It returns 
an integer representing the amount of memory (in bytes) used to store data of the 
specified type. For example, SizeOf(Longint) returns 4, since a Longint variable uses 
four bytes of memory.

Type declarations are illustrated in the sections that follow. For general information 
about type declarations, see “Declaring types” on page 5-37.

Simple types
Simple types, which include ordinal types and real types, define ordered sets of 
values.

Ordinal types

Ordinal types include integer, character, Boolean, enumerated, and subrange types. An 
ordinal type defines an ordered set of values in which each value except the first has 
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a unique predecessor and each value except the last has a unique successor. Further, 
each value has an ordinality which determines the ordering of the type. In most cases, 
if a value has ordinality n, its predecessor has ordinality n–1 and its successor has 
ordinality n+1.

• For integer types, the ordinality of a value is the value itself.
• Subrange types maintain the ordinalities of their base types.
• For other ordinal types, by default the first value has ordinality 0, the next value 

has ordinality 1, and so forth. The declaration of an enumerated type can explicitly 
override this default.

Several predefined functions operate on ordinal values and type identifiers. The most 
important of them are summarized below.

For example, High(Byte) returns 255 because the highest value of type Byte is 255, and 
Succ(2) returns 3 because 3 is the successor of 2.

The standard procedures Inc and Dec increment and decrement the value of an 
ordinal variable. For example, Inc(I) is equivalent to I := Succ(I) and, if I is an 
integer variable, to I := I + 1.

Integer types
An integer type represents a subset of the whole numbers. The generic integer types 
are Integer and Cardinal; use these whenever possible, since they result in the best 
performance for the underlying CPU and operating system. The table below gives 
their ranges and storage formats for the current 32-bit Object Pascal compiler.

Function Parameter Return value Remarks

Ord ordinal expression ordinality of expression’s 
value

Does not take Int64 
arguments.

Pred ordinal expression predecessor of expression’s 
value

Succ ordinal expression successor of expression’s 
value

High ordinal type identifier or 
variable of ordinal type

highest value in type Also operates on short-string 
types and arrays.

Low ordinal type identifier or 
variable of ordinal type

lowest value in type Also operates on short-string 
types and arrays.

Table 5.1 Generic integer types for 32-bit implementations of Object Pascal 

Type Range Format

Integer –2147483648..2147483647 signed 32-bit

Cardinal 0..4294967295 unsigned 32-bit
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Fundamental integer types include Shortint, Smallint, Longint, Int64, Byte, Word, and 
Longword.

In general, arithmetic operations on integers return a value of type Integer—which, in 
its current implementation, is equivalent to the 32-bit Longint. Operations return a 
value of type Int64 only when performed on an Int64 operand. Hence the following 
code produces incorrect results.

var
I: Integer;
J: Int64;
ƒ

I := High(Integer);
J := I + 1;

To get an Int64 return value in this situation, cast I as Int64:

ƒ
J := Int64(I) + 1;

For more information, see “Arithmetic operators” on page 4-6.

Note Most standard routines that take integer arguments truncate Int64 values to 32 bits. 
However, the High, Low, Succ, Pred, Inc, Dec, IntToStr, and IntToHex routines fully 
support Int64 arguments. Also, the Round, Trunc, StrToInt64, and StrToInt64Def 
functions return Int64 values. A few routines—including Ord—cannot take Int64 
values at all.

When you increment the last value or decrement the first value of an integer type, the 
result wraps around the beginning or end of the range. For example, the Shortint type 
has the range –128..127; hence, after execution of the code

var I: Shortint;
ƒ

I := High(Shortint);
I := I + 1;

the value of I is –128. If compiler range-checking is enabled, however, this code 
generates a runtime error.

Table 5.2 Fundamental integer types 

Type Range Format

Shortint –128..127 signed 8-bit

Smallint –32768..32767 signed 16-bit

Longint –2147483648..2147483647 signed 32-bit

Int64 –263..263–1 signed 64-bit

Byte 0..255 unsigned 8-bit

Word 0..65535 unsigned 16-bit

Longword 0..4294967295 unsigned 32-bit
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Character types
The fundamental character types are AnsiChar and WideChar. AnsiChar values are 
byte-sized (8-bit) characters ordered according to the locale character set which is 
possibly multibyte. AnsiChar was originally modeled after the ANSI character set 
(thus its name) but has now been broadened to refer to the current locale character 
set.

WideChar characters use more than one byte to represent every character. In the 
current implementations, WideChar is word-sized (16-bit) characters ordered 
according to the Unicode character set (note that it could be longer in future 
implementations). The first 256 Unicode characters correspond to the ANSI 
characters.

Note On Linux, wchar_t widechar is 32 bits per character. The 16-bit Unicode standard 
that Object Pascal WideChars support is a subset of the 32-bit UCS standard 
supported by Linux and the GNU libraries. Pascal WideChar data must be widened to 
32 bits per character before it can be passed to an OS function as wchar_t.

The generic character type is Char, which is equivalent to AnsiChar. Because the 
implementation of Char is subject to change, it’s a good idea to use the standard 
function SizeOf rather than a hard-coded constant when writing programs that may 
need to handle characters of different sizes.

A string constant of length 1, such as 'A', can denote a character value. The 
predefined function Chr returns the character value for any integer in the range of 
AnsiChar or WideChar; for example, Chr(65) returns the letter A.

Character values, like integers, wrap around when decremented or incremented past 
the beginning or end of their range (unless range-checking is enabled). For example, 
after execution of the code

var
Letter: Char;
I: Integer;

begin
Letter := High(Letter);
for I := 1 to 66 do

Inc(Letter);
end;

Letter has the value A (ASCII 65).

For more information about Unicode characters, see “About extended character sets” 
on page 5-13 and “Working with null-terminated strings” on page 5-13.

Boolean types
The four predefined Boolean types are Boolean, ByteBool, WordBool, and LongBool. 
Boolean is the preferred type. The others exist to provide compatibility with other 
languages and operating system libraries.

A Boolean variable occupies one byte of memory, a ByteBool variable also occupies 
one byte, a WordBool variable occupies two bytes (one word), and a LongBool variable 
occupies four bytes (two words).
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Boolean values are denoted by the predefined constants True and False. The 
following relationships hold.

A value of type ByteBool, LongBool, or WordBool is considered True when its ordinality 
is nonzero. If such a value appears in a context where a Boolean is expected, the 
compiler automatically converts any value of nonzero ordinality to True.

The remarks above refer to the ordinality of Boolean values— not to the values 
themselves. In Object Pascal, Boolean expressions cannot be equated with integers or 
reals. Hence, if X is an integer variable, the statement

if X then ...;

generates a compilation error. Casting the variable to a Boolean type is unreliable, 
but each of the following alternatives will work.

if X <> 0 then ...; { use longer expression that returns Boolean value }

var OK: Boolean { use Boolean variable }
ƒ

if X <> 0 then OK := True;
if OK then ...;

Enumerated types
An enumerated type defines an ordered set of values by simply listing identifiers that 
denote these values. The values have no inherent meaning. To declare an 
enumerated type, use the syntax

type typeName = (val1, ..., valn)

where typeName and each val are valid identifiers. For example, the declaration

type Suit = (Club, Diamond, Heart, Spade);

defines an enumerated type called Suit whose possible values are Club, Diamond, 
Heart, and Spade, where Ord(Club) returns 0, Ord(Diamond) returns 1, and so forth.

When you declare an enumerated type, you are declaring each val to be a constant of 
type typeName. If the val identifiers are used for another purpose within the same 
scope, naming conflicts occur. For example, suppose you declare the type

type TSound = (Click, Clack, Clock);

Unfortunately, Click is also the name of a method defined for TControl and all of the 
objects in the VCL and/or CLX that descend from it. So if you’re writing an 
application and you create an event handler like

Boolean ByteBool, WordBool, LongBool

False < True False <> True

Ord(False) = 0 Ord(False) = 0

Ord(True) = 1 Ord(True) <> 0

Succ(False) = True Succ(False) = True

Pred(True) = False Pred(False) = True
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procedure TForm1.DBGrid1Enter(Sender: TObject);
var Thing: TSound;
begin

ƒ
Thing := Click;
ƒ

end;

you’ll get a compilation error; the compiler interprets Click within the scope of the 
procedure as a reference to TForm’s Click method. You can work around this by 
qualifying the identifier; thus, if TSound is declared in MyUnit, you would use

Thing := MyUnit.Click;

A better solution, however, is to choose constant names that are not likely to conflict 
with other identifiers. Examples:

type
TSound = (tsClick, tsClack, tsClock);
TMyColor = (mcRed, mcBlue, mcGreen, mcYellow, mcOrange);
Answer = (ansYes, ansNo, ansMaybe);

You can use the (val1, ..., valn) construction directly in variable declarations, as if it 
were a type name:

var MyCard: (Club, Diamond, Heart, Spade);

But if you declare MyCard this way, you can’t declare another variable within the 
same scope using these constant identifiers. Thus

var Card1: (Club, Diamond, Heart, Spade);
var Card2: (Club, Diamond, Heart, Spade);

generates a compilation error. But

var Card1, Card2: (Club, Diamond, Heart, Spade);

compiles cleanly, as does

type Suit = (Club, Diamond, Heart, Spade);
var

Card1: Suit;
Card2: Suit;

Enumerated types with explicitly assigned ordinality
By default, the ordinalities of enumerated values start from 0 and follow the 
sequence in which their identifiers are listed in the type declaration. You can override 
this by explicitly assigning ordinalities to some or all of the values in the declaration. 
To assign an ordinality to a value, follow its identifier with = constantExpression, 
where constantExpression is a constant expression that evaluates to an integer. (See 
“Constant expressions” on page 5-41) For example,

type Size = (Small = 5, Medium = 10, Large = Small + Medium);

defines a type called Size whose possible values include Small, Medium, and Large, 
where Ord(Small) returns 5, Ord(Medium) returns 10, and Ord(Large) returns 15.

An enumerated type is, in effect, a subrange whose lowest and highest values 
correspond to the lowest and highest ordinalities of the constants in the declaration. 
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In the example above, the Size type has 11 possible values whose ordinalities range 
from 5 to 15. (Hence the type array[Size] of Char represents an array of 11 characters.) 
Only three of these values have names, but the others are accessible through 
typecasts and through routines such as Pred, Succ, Inc, and Dec. In the following 
example, “anonymous” values in the range of Size are assigned to the variable X.

var X: Size;
X := Small; // Ord(X) = 5
X := Size(6); // Ord(X) = 6
Inc(X); // Ord(X) = 7

Any value that isn’t explicitly assigned an ordinality has ordinality one greater than 
that of the previous value in the list. If the first value isn’t assigned an ordinality, its 
ordinality is 0. Hence, given the declaration

type SomeEnum = (e1, e2, e3 = 1);

SomeEnum has only two possible values: Ord(e1) returns 0, Ord(e2) returns 1, and 
Ord(e3) also returns 1; because e2 and e3 have the same ordinality, they represent the 
same value.

Subrange types
A subrange type represents a subset of the values in another ordinal type (called the 
base type). Any construction of the form Low..High, where Low and High are constant 
expressions of the same ordinal type and Low is less than High, identifies a subrange 
type that includes all values between Low and High. For example, if you declare the 
enumerated type

type TColors = (Red, Blue, Green, Yellow, Orange, Purple, White, Black);

you can then define a subrange type like

type TMyColors = Green..White;

Here TMyColors includes the values Green, Yellow, Orange, Purple, and White.

You can use numeric constants and characters (string constants of length 1) to define 
subrange types:

type
SomeNumbers = -128..127;
Caps = 'A'..'Z';

When you use numeric or character constants to define a subrange, the base type is 
the smallest integer or character type that contains the specified range.

The Low..High construction itself functions as a type name, so you can use it directly 
in variable declarations. For example,

var SomeNum: 1..500;

declares an integer variable whose value can be anywhere in the range from 1 to 500.

The ordinality of each value in a subrange is preserved from the base type. (In the 
first example above, if Color is a variable that holds the value Green, Ord(Color) returns 
2 regardless of whether Color is of type TColors or TMyColors.) Values do not wrap 
around the beginning or end of a subrange, even if the base is an integer or character 
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type; incrementing or decrementing past the boundary of a subrange simply converts 
the value to the base type. Hence, while

type Percentile = 0..99;
var I: Percentile;
ƒ
I := 100;

produces an error,

ƒ
I := 99;
Inc(I);

assigns the value 100 to I (unless compiler range-checking is enabled).

The use of constant expressions in subrange definitions introduces a syntactic 
difficulty. In any type declaration, when the first meaningful character after = is a left 
parenthesis, the compiler assumes that an enumerated type is being defined. Hence 
the code

const
X = 50;
Y = 10;

type
Scale = (X - Y) * 2..(X + Y) * 2;

produces an error. Work around this problem by rewriting the type declaration to 
avoid the leading parenthesis:

type
Scale = 2 * (X - Y)..(X + Y) * 2;

Real types

A real type defines a set of numbers that can be represented with floating-point 
notation. The table below gives the ranges and storage formats for the fundamental 
real types.

Table 5.3 Fundamental real types

Type Range Significant digits Size in bytes

Real48 2.9 x 10–39 .. 1.7 x 1038 11–12 6

Single 1.5 x 10–45 .. 3.4 x 1038 7–8 4

Double 5.0 x 10–324 .. 1.7 x 10308 15–16 8

Extended 3.6 x 10–4951 .. 1.1 x 104932 19–20 10

Comp –263+1 .. 263 –1 19–20 8

Currency –922337203685477.5808.. 922337203685477.5807 19–20 8
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The generic type Real, in its current implementation, is equivalent to Double.

Note The six-byte Real48 type was called Real in earlier versions of Object Pascal. If you are 
recompiling code that uses the older, six-byte Real type, you may want to change it to 
Real48. You can also use the {$REALCOMPATIBILITY ON} compiler directive to 
turn Real back into the six-byte type.

The following remarks apply to fundamental real types.

• Real48 is maintained for backward compatibility. Since its storage format is not 
native to the Intel CPU family, it results in slower performance than other floating-
point types.

• Extended offers greater precision than other real types but is less portable. Be 
careful using Extended if you are creating data files to share across platforms.

• The Comp (computational) type is native to the Intel CPU and represents a 64-bit 
integer. It is classified as a real, however, because it does not behave like an 
ordinal type. (For example, you cannot increment or decrement a Comp value.) 
Comp is maintained for backward compatibility only. Use the Int64 type for better 
performance.

• Currency is a fixed-point data type that minimizes rounding errors in monetary 
calculations. It is stored as a scaled 64-bit integer with the four least significant 
digits implicitly representing decimal places. When mixed with other real types in 
assignments and expressions, Currency values are automatically divided or 
multiplied by 10000.

String types
A string represents a sequence of characters. Object Pascal supports the following 
predefined string types.

AnsiString, sometimes called the long string, is the preferred type for most purposes.

String types can be mixed in assignments and expressions; the compiler 
automatically performs required conversions. But strings passed by reference to a 

Table 5.4 Generic real types

Type Range Significant digits Size in bytes

Real 5.0 x 10–324 .. 1.7 x 10308 15–16 8

Table 5.5 String types

Type Maximum length Memory required Used for

ShortString 255 characters 2 to 256 bytes backward compatibility

AnsiString ~231 characters 4 bytes to 2GB 8-bit (ANSI) characters

WideString ~230 characters 4 bytes to 2GB Unicode characters; 
multi-user servers and multi-
language applications
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function or procedure (as var and out parameters) must be of the appropriate type. 
Strings can be explicitly cast to a different string type (see “Typecasts” on page 4-14).

The reserved word string functions like a generic type identifier. For example,

var S: string;

creates a variable S that holds a string. In the default {$H+} state, the compiler 
interprets string (when it appears without a bracketed number after it) as AnsiString. 
Use the {$H–} directive to turn string into ShortString.

The standard function Length returns the number of characters in a string. The 
SetLength procedure adjusts the length of a string. See the online Help for details.

Comparison of strings is defined by the ordering of the characters in corresponding 
positions. Between strings of unequal length, each character in the longer string 
without a corresponding character in the shorter string takes on a greater-than value. 
For example, “AB” is greater than “A”; that is, 'AB' > 'A' returns True. Zero-length 
strings hold the lowest values.

You can index a string variable just as you would an array. If S is a string variable 
and i an integer expression, S[i] represents the ith character—or, strictly speaking, 
the ith byte—in S. For a ShortString or AnsiString, S[i] is of type AnsiChar; for a 
WideString, S[i] is of type WideChar. The statement MyString[2] := 'A'; assigns the 
value A to the second character of MyString. The following code uses the standard 
UpCase function to convert MyString to uppercase.

var I: Integer;
begin

I := Length(MyString);
while I > 0 do
begin

MyString[I] := UpCase(MyString[I]);
I := I - 1;

end;
end;

Be careful indexing strings in this way, since overwriting the end of a string can cause 
access violations. Also, avoid passing long-string indexes as var parameters, because 
this results in inefficient code.

You can assign the value of a string constant—or any other expression that returns a 
string—to a variable. The length of the string changes dynamically when the 
assignment is made. Examples:

MyString := 'Hello world!';
MyString := 'Hello ' + 'world';
MyString := MyString + '!';
MyString := ' '; { space }
MyString := ''; { empty string }

For more information, see “Character strings” on page 4-4 and “String operators” on 
page 4-9.
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Short strings

A ShortString is 0 to 255 characters long. While the length of a ShortString can change 
dynamically, its memory is a statically allocated 256 bytes; the first byte stores the 
length of the string, and the remaining 255 bytes are available for characters. If S is a 
ShortString variable, Ord(S[0]), like Length(S), returns the length of S; assigning a 
value to S[0], like calling SetLength, changes the length of S. ShortString uses 8-bit 
ANSI characters and is maintained for backward compatibility only.

Object Pascal supports short-string types—in effect, subtypes of ShortString—whose 
maximum length is anywhere from 0 to 255 characters. These are denoted by a 
bracketed numeral appended to the reserved word string. For example,

var MyString: string[100];

creates a variable called MyString whose maximum length is 100 characters. This is 
equivalent to the declarations

type CString = string[100];
var MyString: CString;

Variables declared in this way allocate only as much memory as the type requires—
that is, the specified maximum length plus one byte. In our example, MyString uses 
101 bytes, as compared to 256 bytes for a variable of the predefined ShortString type.

When you assign a value to a short-string variable, the string is truncated if it exceeds 
the maximum length for the type.

The standard functions High and Low operate on short-string type identifiers and 
variables. High returns the maximum length of the short-string type, while Low 
returns zero.

Long strings

AnsiString, also called a long string, represents a dynamically allocated string whose 
maximum length is limited only by available memory. It uses 8-bit ANSI characters.

A long-string variable is a pointer occupying four bytes of memory. When the 
variable is empty—that is, when it contains a zero-length string—the pointer is nil 
and the string uses no additional storage. When the variable is nonempty, it points to 
a dynamically allocated block of memory that contains the string value, a 32-bit 
length indicator, and a 32-bit reference count. This memory is allocated on the heap, 
but its management is entirely automatic and requires no user code.

Because long-string variables are pointers, two or more of them can reference the 
same value without consuming additional memory. The compiler exploits this to 
conserve resources and execute assignments faster. Whenever a long-string variable 
is destroyed or assigned a new value, the reference count of the old string (the 
variable’s previous value) is decremented and the reference count of the new value 
(if there is one) is incremented; if the reference count of a string reaches zero, its 
memory is deallocated. This process is called reference-counting. When indexing is 
used to change the value of a single character in a string, a copy of the string is made 
if—but only if—its reference count is greater than one. This is called copy-on-write 
semantics.
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WideString

The WideString type represents a dynamically allocated string of 16-bit Unicode 
characters. In most respects it is similar to AnsiString.

On Win32, WideString is compatible with the COM BSTR type. Borland development 
tools have support features that convert AnsiString values to WideString, but you may 
need to explicitly cast or convert your strings to WideString.

About extended character sets
Windows and Linux both support single-byte and multibyte character sets as well as 
Unicode. With a single-byte character set (SBCS), each byte in a string represents one 
character. The ANSI character set used by many western operating systems is a 
single-byte character set.

In a multibyte character set (MBCS), some characters are represented by one byte and 
others by more than one byte. The first byte of a multibyte character is called the lead 
byte. In general, the lower 128 characters of a multibyte character set map to the 7-bit 
ASCII characters, and any byte whose ordinal value is greater than 127 is the lead 
byte of a multibyte character. Only single-byte characters can contain the null value 
(#0). Multibyte character sets—especially double-byte character sets (DBCS)—are 
widely used for Asian languages, while the UTF-8 character set used by Linux is a 
multibyte encoding of Unicode.

In the Unicode character set, each character is represented by two bytes. Thus a 
Unicode string is a sequence not of individual bytes but of two-byte words. Unicode 
characters and strings are also called wide characters and wide character strings. The 
first 256 Unicode characters map to the ANSI character set. The Windows operating 
system supports Unicode (UCS-2). The Linux operating system supports UCS-4, a 
superset of UCS-2. Delphi/Kylix supports UCS-2 on both platforms.

Object Pascal supports single-byte and multibyte characters and strings through the 
Char, PChar, AnsiChar, PAnsiChar, and AnsiString types. Indexing of multibyte strings 
is not reliable, since S[i] represents the ith byte (not necessarily the ith character) in S. 
However, the standard string-handling functions have multibyte-enabled 
counterparts that also implement locale-specific ordering for characters. (Names of 
multibyte functions usually start with Ansi-. For example, the multibyte version of 
StrPos is AnsiStrPos.) Multibyte character support is operating-system dependent and 
based on the current locale.

Object Pascal supports Unicode characters and strings through the WideChar, 
PWideChar, and WideString types.

Working with null-terminated strings

Many programming languages, including C and C++, lack a dedicated string data 
type. These languages, and environments that are built with them, rely on null-
terminated strings. A null-terminated string is a zero-based array of characters that 
ends with NULL (#0); since the array has no length indicator, the first NULL 
character marks the end of the string. You can use Object Pascal constructions and 
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special routines in the SysUtils unit (see Chapter 8, “Standard routines and I/O”) to 
handle null-terminated strings when you need to share data with systems that use 
them.

For example, the following type declarations could be used to store null-terminated 
strings.

type
TIdentifier = array[0..15] of Char;
TFileName = array[0..259] of Char;
TMemoText = array[0..1023] of WideChar;

With extended syntax enabled ({$X+}), you can assign a string constant to a statically 
allocated zero-based character array. (Dynamic arrays won’t work for this purpose.) 
If you initialize an array constant with a string that is shorter than the declared length 
of the array, the remaining characters are set to #0. For more information about 
arrays, see “Arrays” on page 5-18.

Using pointers, arrays, and string constants
To manipulate null-terminated strings, it is often necessary to use pointers. (See 
“Pointers and pointer types” on page 5-25.) String constants are assignment-
compatible with the PChar and PWideChar types, which represent pointers to null-
terminated arrays of Char and WideChar values. For example,

var P: PChar;
ƒ

P := 'Hello world!';

points P to an area of memory that contains a null-terminated copy of “Hello world!” 
This is equivalent to

const TempString: array[0..12] of Char = 'Hello world!'#0;
var P: PChar;
ƒ

P := @TempString;

You can also pass string constants to any function that takes value or const 
parameters of type PChar or PWideChar—for example StrUpper('Hello world!'). As 
with assignments to a PChar, the compiler generates a null-terminated copy of the 
string and gives the function a pointer to that copy. Finally, you can initialize PChar 
or PWideChar constants with string literals, alone or in a structured type. Examples:

const
Message: PChar = 'Program terminated';

Prompt: PChar = 'Enter values: ';
Digits: array[0..9] of PChar = (

'Zero', 'One', 'Two', 'Three', 'Four',
'Five', 'Six', 'Seven', 'Eight', 'Nine');

Zero-based character arrays are compatible with PChar and PWideChar. When you 
use a character array in place of a pointer value, the compiler converts the array to a 
pointer constant whose value corresponds to the address of the first element of the 
array. For example,
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var
MyArray: array[0..32] of Char;
MyPointer: PChar;

begin
MyArray := 'Hello';
MyPointer := MyArray;
SomeProcedure(MyArray);
SomeProcedure(MyPointer);

end;

This code calls SomeProcedure twice with the same value.

A character pointer can be indexed as if it were an array. In the example above, 
MyPointer[0] returns H. The index specifies an offset added to the pointer before it is 
dereferenced. (For PWideChar variables, the index is automatically multiplied by 
two.) Thus, if P is a character pointer, P[0] is equivalent to P^ and specifies the first 
character in the array, P[1] specifies the second character in the array, and so forth; 
P[-1] specifies the “character” immediately to the left of P[0]. The compiler performs no 
range checking on these indexes.

The StrUpper function illustrates the use of pointer indexing to iterate through a null-
terminated string:

function StrUpper(Dest, Source: PChar; MaxLen: Integer): PChar;
var

I: Integer;
begin

I := 0;
while (I < MaxLen) and (Source[I] <> #0) do
begin

Dest[I] := UpCase(Source[I]);
Inc(I);

end;
Dest[I] := #0;
Result := Dest;

end;

Mixing Pascal strings and null-terminated strings
You can mix long strings (AnsiString values) and null-terminated strings (PChar 
values) in expressions and assignments, and you can pass PChar values to functions 
or procedures that take long-string parameters. The assignment S := P, where S is a 
string variable and P is a PChar expression, copies a null-terminated string into a long 
string.

In a binary operation, if one operand is a long string and the other a PChar, the PChar 
operand is converted to a long string.

You can cast a PChar value as a long string. This is useful when you want to perform 
a string operation on two PChar values. For example,

S := string(P1) + string(P2);
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You can also cast a long string as a null-terminated string. The following rules apply.

• If S is a long-string expression, PChar(S) casts S as a null-terminated string; it 
returns a pointer to the first character in S. 

On Windows: For example, if Str1 and Str2 are long strings, you could call the 
Win32 API MessageBox function like this:

MessageBox(0, PChar(Str1), PChar(Str2), MB_OK);

(The declaration of MessageBox is in the Windows interface unit.)

On Linux: For example, if Str is a long string, you could call the opendir system 
function like this:

opendir(PChar(Str));

(The declaration of opendir is in the Libc interface unit.)

• You can also use Pointer(S) to cast a long string to an untyped pointer. But if S is 
empty, the typecast returns nil.

• When you cast a long-string variable to a pointer, the pointer remains valid until 
the variable is assigned a new value or goes out of scope. If you cast any other 
long-string expression to a pointer, the pointer is valid only within the statement 
where the typecast is performed.

• When you cast a long-string expression to a pointer, the pointer should usually be 
considered read-only. You can safely use the pointer to modify the long string 
only when all of the following conditions are satisfied.

• The expression cast is a long-string variable.

• The string is not empty.

• The string is unique—that is, has a reference count of one. To guarantee that the 
string is unique, call the SetLength, SetString, or UniqueString procedure.

• The string has not been modified since the typecast was made.

• The characters modified are all within the string. Be careful not to use an out-of-
range index on the pointer.

The same rules apply when mixing WideString values with PWideChar values.

Structured types
Instances of a structured type hold more than one value. Structured types include 
sets, arrays, records, and files as well as class, class-reference, and interface types. (For 
information about class and class-reference types, see Chapter 7, “Classes and 
objects.” For information about interfaces, see Chapter 10, “Object interfaces”.) 
Except for sets, which hold ordinal values only, structured types can contain other 
structured types; a type can have unlimited levels of structuring.
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By default, the values in a structured type are aligned on word or double-word 
boundaries for faster access. When you declare a structured type, you can include the 
reserved word packed to implement compressed data storage. For example,

type TNumbers = packed array[1..100] of Real;

Using packed slows data access and, in the case of a character array, affects type 
compatibility. For more information, see Chapter 11, “Memory management”.

Sets

A set is a collection of values of the same ordinal type. The values have no inherent 
order, nor is it meaningful for a value to be included twice in a set.

The range of a set type is the power set of a specific ordinal type, called the base type; 
that is, the possible values of the set type are all the subsets of the base type, 
including the empty set. The base type can have no more than 256 possible values, 
and their ordinalities must fall between 0 and 255. Any construction of the form

set of baseType

where baseType is an appropriate ordinal type, identifies a set type.

Because of the size limitations for base types, set types are usually defined with 
subranges. For example, the declarations

type
TSomeInts = 1..250;
TIntSet = set of TSomeInts;

create a set type called TIntSet whose values are collections of integers in the range 
from 1 to 250. You could accomplish the same thing with

type TIntSet = set of 1..250;

Given this declaration, you can create a sets like this:

var Set1, Set2: TIntSet;
ƒ

Set1 := [1, 3, 5, 7, 9];
Set2 := [2, 4, 6, 8, 10]

You can also use the set of ... construction directly in variable declarations:

var MySet: set of 'a'..'z';
ƒ

MySet := ['a','b','c'];

Other examples of set types include

set of Byte
set of (Club, Diamond, Heart, Spade)
set of Char;

The in operator tests set membership:

if 'a' in MySet then ... { do something } ;

Every set type can hold the empty set, denoted by []. For more information about 
sets, see “Set constructors” on page 4-13 and “Set operators” on page 4-10.
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Arrays

An array represents an indexed collection of elements of the same type (called the 
base type). Because each element has a unique index, arrays, unlike sets, can 
meaningfully contain the same value more than once. Arrays can be allocated 
statically or dynamically.

Static arrays
Static array types are denoted by constructions of the form

array[indexType1, ..., indexTypen] of baseType

where each indexType is an ordinal type whose range does not exceed 2GB. Since the 
indexTypes index the array, the number of elements an array can hold is limited by 
the product of the sizes of the indexTypes. In practice, indexTypes are usually integer 
subranges.

In the simplest case of a one-dimensional array, there is only a single indexType. For 
example,

var MyArray: array[1..100] of Char;

declares a variable called MyArray that holds an array of 100 character values. Given 
this declaration, MyArray[3] denotes the third character in MyArray. If you create a 
static array but don’t assign values to all its elements, the unused elements are still 
allocated and contain random data; they are like uninitialized variables.

A multidimensional array is an array of arrays. For example,

type TMatrix = array[1..10] of array[1..50] of Real;

is equivalent to

type TMatrix = array[1..10, 1..50] of Real;

Whichever way TMatrix is declared, it represents an array of 500 real values. A 
variable MyMatrix of type TMatrix can be indexed like this: MyMatrix[2,45]; or like 
this: MyMatrix[2][45]. Similarly,

packed array[Boolean,1..10,TShoeSize] of Integer;

is equivalent to

packed array[Boolean] of packed array[1..10] of packed array[TShoeSize] of Integer;

The standard functions Low and High operate on array type identifiers and variables. 
They return the low and high bounds of the array’s first index type. The standard 
function Length returns the number of elements in the array’s first dimension.

A one-dimensional, packed, static array of Char values is called a packed string. 
Packed-string types are compatible with string types and with other packed-string 
types that have the same number of elements. See “Type compatibility and identity” 
on page 5-35.

An array type of the form array[0..x] of Char is called a zero-based character array. 
Zero-based character arrays are used to store null-terminated strings and are 
compatible with PChar values. See “Working with null-terminated strings” on 
page 5-13.
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Dynamic arrays
Dynamic arrays do not have a fixed size or length. Instead, memory for a dynamic 
array is reallocated when you assign a value to the array or pass it to the SetLength 
procedure. Dynamic-array types are denoted by constructions of the form

array of baseType

For example,

var MyFlexibleArray: array of Real;

declares a one-dimensional dynamic array of reals. The declaration does not allocate 
memory for MyFlexibleArray. To create the array in memory, call SetLength. For 
example, given the declaration above,

SetLength(MyFlexibleArray, 20);

allocates an array of 20 reals, indexed 0 to 19. Dynamic arrays are always integer-
indexed, always starting from 0.

Dynamic-array variables are implicitly pointers and are managed by the same 
reference-counting technique used for long strings. To deallocate a dynamic array, 
assign nil to a variable that references the array or pass the variable to Finalize; either 
of these methods disposes of the array, provided there are no other references to it. 
Dynamic arrays of length 0 have the value nil. Do not apply the dereference operator 
(^) to a dynamic-array variable or pass it to the New or Dispose procedure.

If X and Y are variables of the same dynamic-array type, X := Y points X to the same 
array as Y. (There is no need to allocate memory for X before performing this 
operation.) Unlike strings and static arrays, dynamic arrays are not automatically 
copied before they are written to. For example, after this code executes—

var
A, B: array of Integer;

begin
SetLength(A, 1);
A[0] := 1;
B := A;
B[0] := 2;

end;

—the value of A[0] is 2. (If A and B were static arrays, A[0] would still be 1.)

Assigning to a dynamic-array index (for example, MyFlexibleArray[2] := 7) does not 
reallocate the array. Out-of-range indexes are not reported at compile time.

In contrast, to make an independent copy of a dynamic array, you must use the 
global Copy function:

var
A, B: array of Integer;

begin
  SetLength(A, 1);
  A[0] := 1;

B := Copy(A);
B[0] := 2; { B[0] <> A[0] }

end;
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When dynamic-array variables are compared, their references are compared, not 
their array values. Thus, after execution of the code

var
A, B: array of Integer;

begin
SetLength(A, 1);
SetLength(B, 1);
A[0] := 2;
B[0] := 2;

end;

A = B returns False but A[0] = B[0] returns True.

To truncate a dynamic array, pass it to SetLength or Copy and assign the result back to 
the array variable. (The SetLength procedure is usually faster.) For example, if A is a 
dynamic array, A := SetLength(A, 0, 20) truncates all but the first 20 elements of A.

Once a dynamic array has been allocated, you can pass it to the standard functions 
Length, High, and Low. Length returns the number of elements in the array, High 
returns the array’s highest index (that is, Length–1), and Low returns 0. In the case of a 
zero-length array, High returns –1 (with the anomalous consequence that High < 
Low).

Note In some function and procedure declarations, array parameters are represented as 
array of baseType, without any index types specified. For example,

function CheckStrings(A: array of string): Boolean;

This indicates that the function operates on all arrays of the specified base type, 
regardless of their size, how they are indexed, or whether they are allocated statically 
or dynamically. See “Open array parameters” on page 6-15.

Multidimensional dynamic arrays
To declare multidimensional dynamic arrays, use iterated array of ... constructions. 
For example,

type TMessageGrid = array of array of string;
var Msgs: TMessageGrid;

declares a two-dimensional array of strings. To instantiate this array, call SetLength 
with two integer arguments. For example, if I and J are integer-valued variables,

SetLength(Msgs,I,J);

allocates an I-by-J array, and Msgs[0,0] denotes an element of that array.

You can create multidimensional dynamic arrays that are not rectangular. The first 
step is to call SetLength, passing it parameters for the first n dimensions of the array. 
For example,

var Ints: array of array of Integer;
SetLength(Ints,10);

allocates ten rows for Ints but no columns. Later, you can allocate the columns one at 
a time (giving them different lengths); for example

SetLength(Ints[2], 5);
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makes the third column of Ints five integers long. At this point (even if the other 
columns haven’t been allocated) you can assign values to the third column—for 
example, Ints[2,4] := 6.

The following example uses dynamic arrays (and the IntToStr function declared in 
the SysUtils unit) to create a triangular matrix of strings.

var
A : array of array of string;
I, J : Integer;

begin
SetLength(A, 10);
for I := Low(A) to High(A) do
begin

SetLength(A[I], I);
for J := Low(A[I]) to High(A[I]) do

A[I,J] := IntToStr(I) + ',' + IntToStr(J) + ' ';
end;

end;

Array types and assignments
Arrays are assignment-compatible only if they are of the same type. Because Pascal 
uses name-equivalence for types, the following code will not compile.

var
Int1: array[1..10] of Integer;
Int2: array[1..10] of Integer;
ƒ

Int1 := Int2;

To make the assignment work, declare the variables as

var Int1, Int2: array[1..10] of Integer;

or

type IntArray = array[1..10] of Integer;
var

Int1: IntArray;
Int2: IntArray;

Records

A record (analogous to a structure in some languages) represents a heterogeneous set 
of elements. Each element is called a field; the declaration of a record type specifies a 
name and type for each field. The syntax of a record type declaration is

type recordTypeName = record
fieldList1: type1;
ƒ
fieldListn: typen;

end
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where recordTypeName is a valid identifier, each type denotes a type, and each fieldList 
is a valid identifier or a comma-delimited list of identifiers. The final semicolon is 
optional.

For example, the following declaration creates a record type called TDateRec.

type
TDateRec = record

Year: Integer;
Month: (Jan, Feb, Mar, Apr, May, Jun, 

Jul, Aug, Sep, Oct, Nov, Dec);
Day: 1..31;

end;

Each TDateRec contains three fields: an integer value called Year, a value of an 
enumerated type called Month, and another integer between 1 and 31 called Day. The 
identifiers Year, Month, and Day are the field designators for TDateRec, and they behave 
like variables. The TDateRec type declaration, however, does not allocate any 
memory for the Year, Month, and Day fields; memory is allocated when you 
instantiate the record, like this:

var Record1, Record2: TDateRec;

This variable declaration creates two instances of TDateRec, called Record1 and 
Record2.

You can access the fields of a record by qualifying the field designators with the 
record’s name:

Record1.Year := 1904;
Record1.Month := Jun;
Record1.Day := 16;

Or use a with statement:

with Record1 do
begin

Year := 1904;
Month := Jun;
Day := 16;

end;

You can now copy the values of Record1’s fields to Record2:

Record2 := Record1;

Because the scope of a field designator is limited to the record in which it occurs, you 
don’t have to worry about naming conflicts between field designators and other 
variables.

Instead of defining record types, you can use the record ... construction directly in 
variable declarations:

var S: record
Name: string;
Age: Integer;

end;
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However, a declaration like this largely defeats the purpose of records, which is to 
avoid repetitive coding of similar groups of variables. Moreover, separately declared 
records of this kind will not be assignment-compatible, even if their structures are 
identical.

Variant parts in records
A record type can have a variant part, which looks like a case statement. The variant 
part must follow the other fields in the record declaration.

To declare a record type with a variant part, use the following syntax.

type recordTypeName = record
fieldList1: type1;
ƒ
fieldListn: typen;

case tag: ordinalType of
constantList1: (variant1);
ƒ
constantListn: (variantn);

end;

The first part of the declaration—up to the reserved word case—is the same as that of 
a standard record type. The remainder of the declaration—from case to the optional 
final semicolon—is called the variant part. In the variant part,

• tag is optional and can be any valid identifier. If you omit tag, omit the colon (:) 
after it as well.

• ordinalType denotes an ordinal type.

• Each constantList is a constant denoting a value of type ordinalType, or a comma-
delimited list of such constants. No value can be represented more than once in the 
combined constantLists.

• Each variant is a comma-delimited list of declarations resembling the fieldList: type 
constructions in the main part of the record type. That is, a variant has the form

fieldList1: type1;
ƒ

fieldListn: typen;

where each fieldList is a valid identifier or comma-delimited list of identifiers, each 
type denotes a type, and the final semicolon is optional. The types must not be long 
strings, dynamic arrays, variants (that is, Variant types), or interfaces, nor can they 
be structured types that contain long strings, dynamic arrays, variants, or 
interfaces; but they can be pointers to these types.

Records with variant parts are complicated syntactically but deceptively simple 
semantically. The variant part of a record contains several variants which share the 
same space in memory. You can read or write to any field of any variant at any time; 
but if you write to a field in one variant and then to a field in another variant, you may 
be overwriting your own data. The tag, if there is one, functions as an extra field (of 
type ordinalType) in the non-variant part of the record.



5-24 O b j e c t  P a s c a l  L a n g u a g e  G u i d e

S t r u c t u r e d  t y p e s

Variant parts have two purposes. First, suppose you want to create a record type that 
has fields for different kinds of data, but you know that you will never need to use all 
of the fields in a single record instance. For example,

type
TEmployee = record
FirstName, LastName: string[40];
BirthDate: TDate;
case Salaried: Boolean of

True: (AnnualSalary: Currency);
False: (HourlyWage: Currency);

end;

The idea here is that every employee has either a salary or an hourly wage, but not 
both. So when you create an instance of TEmployee, there is no reason to allocate 
enough memory for both fields. In this case, the only difference between the variants 
is in the field names, but the fields could just as easily have been of different types. 
Consider some more complicated examples:

type
TPerson = record
FirstName, LastName: string[40];
BirthDate: TDate;
case Citizen: Boolean of

True: (Birthplace: string[40]);
False: (Country: string[20];

EntryPort: string[20];
EntryDate, ExitDate: TDate);

end;

type
TShapeList = (Rectangle, Triangle, Circle, Ellipse, Other);
TFigure = record

case TShapeList of
Rectangle: (Height, Width: Real);
Triangle: (Side1, Side2, Angle: Real);
Circle: (Radius: Real);
Ellipse, Other: ();

end;

For each record instance, the compiler allocates enough memory to hold all the fields 
in the largest variant. The optional tag and the constantLists (like Rectangle, Triangle, 
and so forth in the last example above) play no role in the way the compiler manages 
the fields; they are there only for the convenience of the programmer.

The second reason for variant parts is that they let you treat the same data as 
belonging to different types, even in cases where the compiler would not allow a 
typecast. For example, if you have a 64-bit Real as the first field in one variant and a 
32-bit Integer as the first field in another, you can assign a value to the Real field and 
then read back the first 32 bits of it as the value of the Integer field (passing it, say, to a 
function that requires integer parameters).
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File types

A file is an ordered set of elements of the same type. Standard I/O routines use the 
predefined TextFile or Text type, which represents a file containing characters 
organized into lines. For more information about file input and output, see 
Chapter 8, “Standard routines and I/O”.

To declare a file type, use the syntax

type fileTypeName = file of type

where fileTypeName is any valid identifier and type is a fixed-size type. Pointer 
types—whether implicit or explicit—are not allowed, so a file cannot contain 
dynamic arrays, long strings, classes, objects, pointers, variants, other files, or 
structured types that contain any of these.

For example,

type
PhoneEntry = record

FirstName, LastName: string[20];
PhoneNumber: string[15];
Listed: Boolean;

end;
PhoneList = file of PhoneEntry;

declares a file type for recording names and telephone numbers.

You can also use the file of ... construction directly in a variable declaration. For 
example,

var List1: file of PhoneEntry;

The word file by itself indicates an untyped file:

var DataFile: file;

For more information, see “Untyped files” on page 8-4.

Files are not allowed in arrays or records.

Pointers and pointer types
A pointer is a variable that denotes a memory address. When a pointer holds the 
address of another variable, we say that it points to the location of that variable in 
memory or to the data stored there. In the case of an array or other structured type, a 
pointer holds the address of the first element in the structure.

Pointers are typed to indicate the kind of data stored at the addresses they hold. The 
general-purpose Pointer type can represent a pointer to any data, while more 
specialized pointer types reference only specific types of data. Pointers occupy four 
bytes of memory.
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Overview of pointers

To see how pointers work, look at the following example.

1 var
2 X, Y: Integer; // X and Y are Integer variables
3 P: ^Integer; // P points to an Integer
4 begin
5 X := 17; // assign a value to X
6 P := @X; // assign the address of X to P
7 Y := P^; // dereference P; assign the result to Y
8 end;

Line 2 declares X and Y as variables of type Integer. Line 3 declares P as a pointer to 
an Integer value; this means that P can point to the location of X or Y. Line 5 assigns a 
value to X, and line 6 assigns the address of X (denoted by @X) to P. Finally, line 7 
retrieves the value at the location pointed to by P (denoted by ^P) and assigns it to Y. 
After this code executes, X and Y have the same value, namely 17.

The @ operator, which we have used here to take the address of a variable, also 
operates on functions and procedures. For more information, see “The @ operator” 
on page 4-12 and “Procedural types in statements and expressions” on page 5-30.

The symbol ^ has two purposes, both of which are illustrated in our example. When 
it appears before a type identifier—

^typeName

—it denotes a type that represents pointers to variables of type typeName. When it 
appears after a pointer variable—

pointer^

—it dereferences the pointer; that is, it returns the value stored at the memory address 
held by the pointer.

Our example may seem like a roundabout way of copying the value of one variable 
to another—something that we could have accomplished with a simple assignment 
statement. But pointers are useful for several reasons. First, understanding pointers 
will help you to understand Object Pascal, since pointers often operate behind the 
scenes in code where they don’t appear explicitly. Any data type that requires large, 
dynamically allocated blocks of memory uses pointers. Long-string variables, for 
instance, are implicitly pointers, as are class variables. Moreover, some advanced 
programming techniques require the use of pointers.

Finally, pointers are sometimes the only way to circumvent Object Pascal’s strict data 
typing. By referencing a variable with an all-purpose Pointer, casting the Pointer to a 
more specific type, and then dereferencing it, you can treat the data stored by any 
variable as if it belonged to any type. For example, the following code assigns data 
stored in a real variable to an integer variable.

type
  PInteger = ^Integer;
var

R: Single;
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I: Integer;
P: Pointer;
PI: PInteger;

begin
ƒ

  P := @R;
  PI := PInteger(P);
  I := PI^;
end;

Of course, reals and integers are stored in different formats. This assignment simply 
copies raw binary data from R to I, without converting it.

In addition to assigning the result of an @ operation, you can use several standard 
routines to give a value to a pointer. The New and GetMem procedures assign a 
memory address to an existing pointer, while the Addr and Ptr functions return a 
pointer to a specified address or variable.

Dereferenced pointers can be qualified and can function as qualifiers, as in the 
expression P1^.Data^.

The reserved word nil is a special constant that can be assigned to any pointer. When 
nil is assigned to a pointer, the pointer doesn’t reference anything.

Pointer types

You can declare a pointer to any type, using the syntax

type pointerTypeName = ^type

When you define a record or other data type, it’s a common practice also to define a 
pointer to that type. This makes it easy to manipulate instances of the type without 
copying large blocks of memory.

Standard pointer types exist for many purposes. The most versatile is Pointer, which 
can point to data of any kind. But a Pointer variable cannot be dereferenced; placing 
the ^ symbol after a Pointer variable causes a compilation error. To access the data 
referenced by a Pointer variable, first cast it to another pointer type and then 
dereference it.

Character pointers
The fundamental types PAnsiChar and PWideChar represent pointers to AnsiChar and 
WideChar values, respectively. The generic PChar represents a pointer to a Char (that 
is, in its current implementation, to an AnsiChar). These character pointers are used to 
manipulate null-terminated strings. (See “Working with null-terminated strings” on 
page 5-13.)
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Other standard pointer types
The System and SysUtils units declare many standard pointer types that are 
commonly used. 

Procedural types
Procedural types allow you to treat procedures and functions as values that can be 
assigned to variables or passed to other procedures and functions. For example, 
suppose you define a function called Calc that takes two integer parameters and 
returns an integer:

function Calc(X,Y: Integer): Integer;

You can assign the Calc function to the variable F:

var F: function(X,Y: Integer): Integer;
F := Calc;

If you take any procedure or function heading and remove the identifier after the 
word procedure or function, what’s left is the name of a procedural type. You can 
use such type names directly in variable declarations (as in the example above) or to 
declare new types:

type
TIntegerFunction = function: Integer;
TProcedure = procedure;
TStrProc = procedure(const S: string);
TMathFunc = function(X: Double): Double;

var
F: TIntegerFunction; { F is a parameterless function that returns an integer }

Table 5.6 Selected pointer types declared in System and SysUtils

Pointer type Points to variables of type

PAnsiString, PString AnsiString

PByteArray TByteArray (declared in SysUtils). Used to typecast dynamically 
allocated memory for array access.

PCurrency, PDouble, 
PExtended, PSingle

Currency, Double, Extended, Single

PInteger Integer

POleVariant OleVariant

PShortString ShortString. Useful when porting legacy code that uses the old PString 
type.

PTextBuf TTextBuf (declared in SysUtils). TTextBuf is the internal buffer type in a 
TTextRec file record.)

PVarRec TVarRec (declared in System)

PVariant Variant

PWideString WideString

PWordArray TWordArray (declared in SysUtils). Used to typecast dynamically 
allocated memory for arrays of 2-byte values.
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Proc: TProcedure; { Proc is a parameterless procedure }
SP: TStrProc; { SP is a procedure that takes a string parameter }
M: TMathFunc; { M is a function that takes a Double (real) parameter 

and returns a Double }
procedure FuncProc(P: TIntegerFunction); { FuncProc is a procedure whose only parameter 

is a parameterless integer-valued function }

The variables above are all procedure pointers—that is, pointers to the address of a 
procedure or function. If you want to reference a method of an instance object (see 
Chapter 7, “Classes and objects”), you need to add the words of object to the 
procedural type name. For example

type
TMethod = procedure of object;
TNotifyEvent = procedure(Sender: TObject) of object;

These types represent method pointers. A method pointer is really a pair of pointers; 
the first stores the address of a method, and the second stores a reference to the object 
the method belongs to. Given the declarations

type
TNotifyEvent = procedure(Sender: TObject) of object;
TMainForm = class(TForm)

procedure ButtonClick(Sender: TObject);
ƒ

end;
var

MainForm: TMainForm;
OnClick: TNotifyEvent

we could make the following assignment.

OnClick := MainForm.ButtonClick;

Two procedural types are compatible if they have

• the same calling convention,
• the same return value (or no return value), and
• the same number of parameters, with identically typed parameters in 

corresponding positions. (Parameter names do not matter.)

Procedure pointer types are always incompatible with method pointer types. The 
value nil can be assigned to any procedural type.

Nested procedures and functions (routines declared within other routines) cannot be 
used as procedural values, nor can predefined procedures and functions. If you want 
to use a predefined routine like Length as a procedural value, write a wrapper for it:

function FLength(S: string): Integer;
begin

Result := Length(S);
end;
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Procedural types in statements and expressions

When a procedural variable is on the left side of an assignment statement, the 
compiler expects a procedural value on the right. The assignment makes the variable 
on the left a pointer to the function or procedure indicated on the right. In other 
contexts, however, using a procedural variable results in a call to the referenced 
procedure or function. You can even use a procedural variable to pass parameters:

var
F: function(X: Integer): Integer;
I: Integer;

function SomeFunction(X: Integer): Integer;
ƒ

F := SomeFunction; // assign SomeFunction to F
I := F(4); // call function; assign result to I

In assignment statements, the type of the variable on the left determines the 
interpretation of procedure or method pointers on the right. For example,

var
F, G: function: Integer;
I: Integer;

function SomeFunction: Integer;
ƒ

F := SomeFunction; // assign SomeFunction to F
G := F; // copy F to G
I := G; // call function; assign result to I

The first statement assigns a procedural value to F. The second statement copies that 
value to another variable. The third statement makes a call to the referenced function 
and assigns the result to I. Because I is an integer variable, not a procedural one, the 
last assignment actually calls the function (which returns an integer).

In some situations it is less clear how a procedural variable should be interpreted. 
Consider the statement

if F = MyFunction then ...;

In this case, the occurrence of F results in a function call; the compiler calls the 
function pointed to by F, then calls the function MyFunction, then compares the 
results. The rule is that whenever a procedural variable occurs within an expression, 
it represents a call to the referenced procedure or function. In a case where F 
references a procedure (which doesn’t return a value), or where F references a 
function that requires parameters, the statement above causes a compilation error. To 
compare the procedural value of F with MyFunction, use

if @F = @MyFunction then ...;

@F converts F into an untyped pointer variable that contains an address, and 
@MyFunction returns the address of MyFunction.

To get the memory address of a procedural variable (rather than the address stored 
in it), use @@. For example, @@F returns the address of F.

The @ operator can also be used to assign an untyped pointer value to a procedural 
variable. For example,
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var StrComp: function(Str1, Str2: PChar): Integer;
ƒ

@StrComp := GetProcAddress(KernelHandle, 'lstrcmpi');

calls the GetProcAddress function and points StrComp to the result.

Any procedural variable can hold the value nil, which means that it points to 
nothing. But attempting to call a nil-valued procedural variable is an error. To test 
whether a procedural variable is assigned, use the standard function Assigned:

if Assigned(OnClick) then OnClick(X);

Variant types
Sometimes it is necessary to manipulate data whose type varies or cannot be 
determined at compile time. In these cases, one option is to use variables and 
parameters of type Variant, which represent values that can change type at runtime. 
Variants offer greater flexibility but consume more memory than regular variables, 
and operations on them are slower than on statically bound types. Moreover, illicit 
operations on variants often result in runtime errors, where similar mistakes with 
regular variables would have been caught at compile time. You can also create 
custom variant types.

By default, Variants can hold values of any type except records, sets, static arrays, 
files, classes, class references, and pointers. In other words, variants can hold 
anything but structured types and pointers. They can hold interfaces, whose methods 
and properties can be accessed through them. (See Chapter 10, “Object interfaces”.) 
They can hold dynamic arrays, and they can hold a special kind of static array called 
a variant array. (See “Variant arrays” on page 5-34.) Variants can mix with other 
variants and with integer, real, string, and Boolean values in expressions and 
assignments; the compiler automatically performs type conversions.

Variants that contain strings cannot be indexed. That is, if V is a variant that holds a 
string value, the construction V[1] causes a runtime error.

You can define custom Variants that extend the Variant type to hold arbitrary values. 
For example, you can define a Variant string type that allows indexing or that holds a 
particular class reference, record type, or static array. Custom Variant types are 
defined by creating descendants to the TCustomVariantType class.

A variant occupies 16 bytes of memory and consists of a type code and a value, or 
pointer to a value, of the type specified by the code. All variants are initialized on 
creation to the special value Unassigned. The special value Null indicates unknown or 
missing data.

The standard function VarType returns a variant’s type code. The varTypeMask 
constant is a bit mask used to extract the code from VarType’s return value, so that, 
for example,

VarType(V) and varTypeMask = varDouble

returns True if V contains a Double or an array of Double. (The mask simply hides the 
first bit, which indicates whether the variant holds an array.) The TVarData record 
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type defined in the System unit can be used to typecast variants and gain access to 
their internal representation. See the online Help on VarType for a list if codes, and 
note that new type codes may be added in future implementations of Object Pascal.

Variant type conversions

All integer, real, string, character, and Boolean types are assignment-compatible with 
Variant. Expressions can be explicitly cast as variants, and the VarAsType and VarCast 
standard routines can be used to change the internal representation of a variant. The 
following code demonstrates the use of variants and some of the automatic 
conversions performed when variants are mixed with other types.

var
V1, V2, V3, V4, V5: Variant;
I: Integer;
D: Double;
S: string;

begin
V1 := 1; { integer value }
V2 := 1234.5678; { real value }
V3 := 'Hello world!'; { string value }
V4 := '1000'; { string value }
V5 := V1 + V2 + V4; { real value 2235.5678}
I := V1; { I = 1 (integer value) }
D := V2; { D = 1234.5678 (real value) }
S := V3; { S = 'Hello world!' (string value) }
I := V4; { I = 1000 (integer value) }
S := V5; { S = '2235.5678' (string value) }

end;

The compiler performs type conversions according to the following rules. 

Table 5.7 Variant type conversion rules

Target
Source integer real string character Boolean

integer converts 
integer 
formats

converts to 
real

converts to 
string 
representation

same as 
string 
(left)

returns False if 0, 
True otherwise

real rounds to 
nearest integer

converts real 
formats

converts to 
string 
representation 
using regional 
settings

same as 
string 
(left)

returns False if 0, 
True otherwise
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Out-of-range assignments often result in the target variable getting the highest value 
in its range. Invalid assignments or casts raise the EVariantError exception.

Special conversion rules apply to the TDateTime real type declared in the System unit. 
When a TDateTime is converted to any other type, it treated as a normal Double. When 
an integer, real, or Boolean is converted to a TDateTime, it is first converted to a 
Double, then read as a date-time value. When a string is converted to a TDateTime, it is 
interpreted as a date-time value using the regional settings. When an Unassigned 
value is converted to TDateTime, it is treated like the real or integer value 0. 
Converting a Null value to TDateTime raises an exception.

On Windows, if a variant references a COM interface, any attempt to convert it reads 
the object’s default property and converts that value to the requested type. If the 
object has no default property, an exception is raised.

Variants in expressions

All operators except ^, is, and in take variant operands. Operations on variants 
return Variant values; they return Null if one or both operands is Null, and raise an 
exception if one or both operands is Unassigned. In a binary operation, if only one 
operand is a variant, the other is converted to a variant.

The return type of an operation is determined by its operands. In general, the same 
rules that apply to operands of statically bound types apply to variants. For example, 

string converts to 
integer, 
truncating if 
necessary; 
raises 
exception if 
string is not 
numeric

converts to 
real using 
regional 
settings; raises 
exception if 
string is not 
numeric

converts 
string/
character 
formats

same as 
string 
(left)

returns False if 
string is “false” 
(non–case-
sensitive) or a 
numeric string 
that evaluates to 
0, True if string is 
“true” or a 
nonzero numeric 
string; raises 
exception 
otherwise

character same as string 
(above)

same as string 
(above)

same as string 
(above)

same as 
string-to-
string

same as string 
(above)

Boolean False = 0, 
True = –1 
(255 if Byte)

False = 0, 
True = –1

False = “0”, 
True = “–1”

same as 
string 
(left)

False = False, 
True = True

Unassigned returns 0 returns 0 returns empty 
string

same as 
string 
(left)

returns False

Null raises 
exception

raises 
exception

raises 
exception

same as 
string 
(left)

raises exception

Table 5.7 Variant type conversion rules (continued)
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if V1 and V2 are variants that hold an integer and a real value, then V1 + V2 returns a 
real-valued variant. (See “Operators” on page 4-6.) With variants, however, you can 
perform binary operations on combinations of values that would not be allowed 
using statically typed expressions. When possible, the compiler converts mismatched 
variants using the rules summarized in Table 5.7. For example, if V3 and V4 are 
variants that hold a numeric string and an integer, the expression V3 + V4 returns an 
integer-valued variant; the numeric string is converted to an integer before the 
operation is performed.

Variant arrays

You cannot assign an ordinary static array to a variant. Instead, create a variant array 
by calling either of the standard functions VarArrayCreate or VarArrayOf. For 
example,

V: Variant;
ƒ

V := VarArrayCreate([0,9], varInteger);

creates a variant array of integers (of length 10) and assigns it to the variant V. The 
array can be indexed using V[0], V[1], and so forth, but it is not possible to pass a 
variant array element as a var parameter. Variant arrays are always indexed with 
integers.

The second parameter in the call to VarArrayCreate is the type code for the array’s 
base type. For a list of these codes, see the online Help on VarType. Never pass the 
code varString to VarArrayCreate; to create a variant array of strings, use varOleStr.

Variants can hold variant arrays of different sizes, dimensions, and base types. The 
elements of a variant array can be of any type allowed in variants except ShortString 
and AnsiString, and if the base type of the array is Variant, its elements can even be 
heterogeneous. Use the VarArrayRedim function to resize a variant array. Other 
standard routines that operate on variant arrays include VarArrayDimCount, 
VarArrayLowBound, VarArrayHighBound, VarArrayRef, VarArrayLock, and 
VarArrayUnlock.

When a variant containing a variant array is assigned to another variant or passed as 
a value parameter, the entire array is copied. Don’t perform such operations 
unnecessarily, since they are memory-inefficient.

OleVariant

The OleVariant type exists on both the Windows and Linux platforms. The main 
difference between Variant and OleVariant is that Variant can contain data types that 
only the current application knows what to do with. OleVariant can only contain the 
data types defined as compatible with OLE Automation which means that the data 
types that can be passed between programs or across the network without worrying 
about whether the other end will know how to handle the data.

When you assign a Variant that contains custom data (such as a Pascal string, or a one 
of the new custom variant types) to an OleVariant, the runtime library tries to convert 
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the Variant into one of the OleVariant standard data types (such as a Pascal string 
converts to an OLE BSTR string). For example, if a variant containing an AnsiString is 
assigned to an OleVariant, the AnsiString becomes a WideString. The same is true 
when passing a Variant to an OleVariant function parameter.

Type compatibility and identity
To understand which operations can be performed on which expressions, we need to 
distinguish several kinds of compatibility among types and values. These include 
type identity, type compatibility, and assignment-compatibility.

Type identity

Type identity is almost straightforward. When one type identifier is declared using 
another type identifier, without qualification, they denote the same type. Thus, given 
the declarations

type
T1 = Integer;
T2 = T1;
T3 = Integer;
T4 = T2;

T1, T2, T3, T4, and Integer all denote the same type. To create distinct types, repeat the 
word type in the declaration. For example,

type TMyInteger = type Integer;

creates a new type called TMyInteger which is not identical to Integer.

Language constructions that function as type names denote a different type each time 
they occur. Thus the declarations

type
TS1 = set of Char;
TS2 = set of Char;

create two distinct types, TS1 and TS2. Similarly, the variable declarations

var
S1: string[10];
S2: string[10];

create two variables of distinct types. To create variables of the same type, use

var S1, S2: string[10];

or

type MyString = string[10];
var

S1: MyString;
S2: MyString;
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Type compatibility

Every type is compatible with itself. Two distinct types are compatible if they satisfy 
at least one of the following conditions.

• They are both real types.
• They are both integer types.
• One type is a subrange of the other.
• Both types are subranges of the same type.
• Both are set types with compatible base types.
• Both are packed-string types with the same number of components.
• One is a string type and the other is a string, packed-string, or Char type.
• One type is Variant and the other is an integer, real, string, character, or Boolean 

type.
• Both are class, class-reference, or interface types, and one type is derived from the 

other.
• One type is PChar or PWideChar and the other is a zero-based character array of the 

form array[0..n] of Char.
• One type is Pointer (an untyped pointer) and the other is any pointer type.
• Both types are (typed) pointers to the same type and the {$T+} compiler directive 

is in effect.
• Both are procedural types with the same result type, the same number of 

parameters, and type-identity between parameters in corresponding positions.

Assignment-compatibility

Assignment-compatibility is not a symmetric relation. An expression of type T2 can 
be assigned to a variable of type T1 if the value of the expression falls in the range of 
T1 and at least one of the following conditions is satisfied.

• T1 and T2 are of the same type, and it is not a file type or structured type that 
contains a file type at any level.

• T1 and T2 are compatible ordinal types.
• T1 and T2 are both real types.
• T1 is a real type and T2 is an integer type.
• T1 is PChar or any string type and the expression is a string constant.
• T1 and T2 are both string types.
• T1 is a string type and T2 is a Char or packed-string type.
• T1 is a long string and T2 is PChar.
• T1 and T2 are compatible packed-string types.
• T1 and T2 are compatible set types.
• T1 and T2 are compatible pointer types.
• T1 and T2 are both class, class-reference, or interface types and T2 is a derived 

from T1.
• T1 is an interface type and T2 is a class type that implements T1.
• T1 is PChar or PWideChar and T2 is a zero-based character array of the form 

array[0..n] of Char.
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• T1 and T2 are compatible procedural types. (A function or procedure identifier is 
treated, in certain assignment statements, as an expression of a procedural type. 
See “Procedural types in statements and expressions” on page 5-30.)

• T1 is Variant and T2 is an integer, real, string, character, Boolean, or interface type.
• T1 is an integer, real, string, character, or Boolean type and T2 is Variant.
• T1 is the IUnknown or IDispatch interface type and T2 is Variant. (The variant’s type 

code must be varEmpty, varUnknown, or varDispatch if T1 is IUnknown, and 
varEmpty or varDispatch if T1 is IDispatch.)

Declaring types
A type declaration specifies an identifier that denotes a type. The syntax for a type 
declaration is

type newTypeName = type

where newTypeName is a valid identifier. For example, given the type declaration

type TMyString = string;

you can make the variable declaration

var S: TMyString;

A type identifier’s scope doesn’t include the type declaration itself (except for pointer 
types). So you cannot, for example, define a record type that uses itself recursively.

When you declare a type that is identical to an existing type, the compiler treats the 
new type identifier as an alias for the old one. Thus, given the declarations

type TValue = Real;
var

X: Real;
Y: TValue;

X and Y are of the same type; at runtime, there is no way to distinguish TValue from 
Real. This is usually of little consequence, but if your purpose in defining a new type 
is to utilize runtime type information—for example, to associate a property editor 
with properties of a particular type—the distinction between “different name” and 
“different type” becomes important. In this case, use the syntax

type newTypeName = type type

For example,

type TValue = type Real;

forces the compiler to create a new, distinct type called TValue.

Variables
A variable is an identifier whose value can change at runtime. Put differently, a 
variable is a name for a location in memory; you can use the name to read or write to 
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the memory location. Variables are like containers for data, and, because they are 
typed, they tell the compiler how to interpret the data they hold.

Declaring variables

The basic syntax for a variable declaration is

var identifierList: type;

where identifierList is a comma-delimited list of valid identifiers and type is any valid 
type. For example,

var I: Integer;

declares a variable I of type Integer, while

var X, Y: Real;

declares two variables—X and Y—of type Real.

Consecutive variable declarations do not have to repeat the reserved word var:

var
X, Y, Z: Double;
I, J, K: Integer;
Digit: 0..9;
Okay: Boolean;

Variables declared within a procedure or function are sometimes called local, while 
other variables are called global. Global variables can be initialized at the same time 
they are declared, using the syntax

var identifier: type = constantExpression;

where constantExpression is any constant expression representing a value of type type. 
(For more information about constant expressions, see “Constant expressions” on 
page 5-41.) Thus the declaration

var I: Integer = 7;

is equivalent to the declaration and statement

var I: Integer;
ƒ

I := 7;

Multiple variable declarations (such as var X, Y, Z: Real;) cannot include 
initializations, nor can declarations of variant and file-type variables.

If you don’t explicitly initialize a global variable, the compiler initializes it to 0. Local 
variables, in contrast, cannot be initialized in their declarations and contain random 
data until a value is assigned to them.

When you declare a variable, you are allocating memory which is freed 
automatically when the variable is no longer used. In particular, local variables exist 
only until the program exits from the function or procedure in which they are 
declared. For more information about variables and memory management, see 
Chapter 11, “Memory management”.
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Absolute addresses
You can create a new variable that resides at the same address as another variable. To 
do so, put the directive absolute after the type name in the declaration of the new 
variable, followed by the name of an existing (previously declared) variable. For 
example,

var
Str: string[32];
StrLen: Byte absolute Str;

specifies that the variable StrLen should start at the same address as Str. Since the first 
byte of a short string contains the string’s length, the value of StrLen is the length of 
Str.

You cannot initialize a variable in an absolute declaration or combine absolute with 
any other directives.

Dynamic variables
You can create dynamic variables by calling the GetMem or New procedure. Such 
variables are allocated on the heap and are not managed automatically. Once you 
create one, it is your responsibility ultimately to free the variable’s memory; use 
FreeMem to destroy variables created by GetMem and Dispose to destroy variables 
created by New. Other standard routines that operate on dynamic variables include 
ReallocMem, Initialize, StrAlloc, and StrDispose.

Long strings, wide strings, dynamic arrays, variants, and interfaces are also heap-
allocated dynamic variables, but their memory is managed automatically.

Thread-local variables
Thread-local (or thread) variables are used in multithreaded applications. A thread-
local variable is like a global variable, except that each thread of execution gets its 
own private copy of the variable, which cannot be accessed from other threads. 
Thread-local variables are declared with threadvar instead of var. For example,

threadvar X: Integer;

Thread-variable declarations

• cannot occur within a procedure or function.
• cannot include initializations.
• cannot specify the absolute directive.

Do not create pointer- or procedural-type thread variables, and do not use thread 
variables in dynamically loadable libraries (other than packages).

Dynamic variables that are ordinarily managed by the compiler—long strings, wide 
strings, dynamic arrays, variants, and interfaces—can be declared with threadvar, 
but the compiler does not automatically free the heap-allocated memory created by 
each thread of execution. If you use these data types in thread variables, it is your 
responsibility to dispose of their memory. For example,

threadvar S: AnsiString;
S := 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';
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ƒ
S := ''; // free the memory used by S

(You can free a variant by setting it to Unassigned and an interface or dynamic array 
by setting it to nil.)

Declared constants
Several different language constructions are referred to as “constants”. There are 
numeric constants (also called numerals) like 17, and string constants (also called 
character strings or string literals) like 'Hello world!'; for information about numeric 
and string constants, see Chapter 4, “Syntactic elements”. Every enumerated type 
defines constants that represent the values of that type. There are predefined 
constants like True, False, and nil. Finally, there are constants that, like variables, are 
created individually by declaration.

Declared constants are either true constants or typed constants. These two kinds of 
constant are superficially similar, but they are governed by different rules and used 
for different purposes.

True constants

A true constant is a declared identifier whose value cannot change. For example,

const MaxValue = 237;

declares a constant called MaxValue that returns the integer 237. The syntax for 
declaring a true constant is

const identifier = constantExpression

where identifier is any valid identifier and constantExpression is an expression that the 
compiler can evaluate without executing your program. (See “Constant expressions” 
on page 5-41 for more information.)

If constantExpression returns an ordinal value, you can specify the type of the declared 
constant using a value typecast. For example

const MyNumber = Int64(17);

declares a constant called MyNumber, of type Int64, that returns the integer 17. 
Otherwise, the type of the declared constant is the type of the constantExpression.

• If constantExpression is a character string, the declared constant is compatible with 
any string type. If the character string is of length 1, it is also compatible with any 
character type.
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• If constantExpression is a real, its type is Extended. If it is an integer, its type is given 
by the table below.

Here are some examples of constant declarations:

const
Min = 0;
Max = 100;
Center = (Max - Min) div 2;
Beta = Chr(225);
NumChars = Ord('Z') - Ord('A') + 1;
Message = 'Out of memory';
ErrStr = ' Error: ' + Message + '. ';
ErrPos = 80 - Length(ErrStr) div 2;
Ln10 = 2.302585092994045684;
Ln10R = 1 / Ln10;
Numeric = ['0'..'9'];
Alpha = ['A'..'Z', 'a'..'z'];
AlphaNum = Alpha + Numeric;

Constant expressions
A constant expression is an expression that the compiler can evaluate without 
executing the program in which it occurs. Constant expressions include numerals; 
character strings; true constants; values of enumerated types; the special constants 
True, False, and nil; and expressions built exclusively from these elements with 
operators, typecasts, and set constructors. Constant expressions cannot include 
variables, pointers, or function calls, except calls to the following predefined 
functions:

Table 5.8 Types for integer constants

Range of constant
(hexadecimal)

Range of constant
(decimal)

Type

–$8000000000000000..–$80000001 –263..–2147483649 Int64

–$80000000..–$8001 –2147483648..–32769 Integer

–$8000..–$81 –32768..–129 Smallint

–$80..–1 –128..–1 Shortint

0..$7F 0..127 0..127

$80..$FF 128..255 Byte

$0100..$7FFF 256..32767 0..32767

$8000..$FFFF 32768..65535 Word

$10000..$7FFFFFFF 65536..2147483647 0..2147483647

$80000000..$FFFFFFFF 2147483648..4294967295 Cardinal

$100000000..$7FFFFFFFFFFFFFFF 4294967296..263–1 Int64

Abs
Chr
Hi

High
Length
Lo

Low
Odd
Ord

Pred
Round
SizeOf

Succ
Swap
Trunc
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This definition of a constant expression is used in several places in Object Pascal’s 
syntax specification. Constant expressions are required for initializing global 
variables, defining subrange types, assigning ordinalities to values in enumerated 
types, specifying default parameter values, writing case statements, and declaring 
both true and typed constants.

Examples of constant expressions:

100
'A'
256 - 1
(2.5 + 1) / (2.5 - 1)
'Borland' + ' ' + 'Developer'
Chr(32)
Ord('Z') - Ord('A') + 1

Resource strings
Resource strings are stored as resources and linked into the executable or library so 
that they can be modified without recompiling the program. For more information, 
see the online Help topics on localizing applications.

Resource strings are declared like other true constants, except that the word const is 
replaced by resourcestring. The expression to the right of the = symbol must be a 
constant expression and must return a string value. For example,

resourcestring
CreateError = 'Cannot create file %s'; { for explanations of format specifiers, }
OpenError = 'Cannot open file %s'; { see 'Format strings' in the online Help }
LineTooLong = 'Line too long';
ProductName = 'Borland Rocks\000\000';
SomeResourceString = SomeTrueConstant;

The compiler automatically resolves naming conflicts among resource strings in 
different libraries.

Typed constants

Typed constants, unlike true constants, can hold values of array, record, procedural, 
and pointer types. Typed constants cannot occur in constant expressions.
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In the default {$J-} compiler state, typed constants can not have new values assigned 
to them; they are, in effect, read-only variables. However, if the {$J+} compiler 
directive is in effect, typed constants can have new values assigned to them; they 
behave essentially like initialized variables.

Declare a typed constant like this:

const identifier: type = value

where identifier is any valid identifier, type is any type except files and variants, and 
value is an expression of type type. For example,

const Max: Integer = 100;

In most cases, value must be a constant expression; but if type is an array, record, 
procedural, or pointer type, special rules apply.

Array constants
To declare an array constant, enclose the values of the array’s elements, separated by 
commas, in parentheses at the end of the declaration. These values must be 
represented by constant expressions. For example,

const Digits: array[0..9] of Char = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9');

declares a typed constant called Digits that holds an array of characters.

Zero-based character arrays often represent null-terminated strings, and for this 
reason string constants can be used to initialize character arrays. So the declaration 
above can be more conveniently represented as

const Digits: array[0..9] of Char = '0123456789';

To define a multidimensional array constant, enclose the values of each dimension in 
a separate set of parentheses, separated by commas. For example,

type TCube = array[0..1, 0..1, 0..1] of Integer;
const Maze: TCube = (((0, 1), (2, 3)), ((4, 5), (6,7)));

creates an array called Maze where

Maze[0,0,0] = 0
Maze[0,0,1] = 1
Maze[0,1,0] = 2
Maze[0,1,1] = 3
Maze[1,0,0] = 4
Maze[1,0,1] = 5
Maze[1,1,0] = 6
Maze[1,1,1] = 7

Array constants cannot contain file-type values at any level.

Record constants
To declare a record constant, specify the value of each field—as fieldName: value, 
with the field assignments separated by semicolons—in parentheses at the end of the 
declaration. The values must be represented by constant expressions. The fields must 
be listed in the order in which they appear in the record type declaration, and the tag 
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field, if there is one, must have a value specified; if the record has a variant part, only 
the variant selected by the tag field can be assigned values.

Examples:

type
TPoint = record

X, Y: Single;
end;
TVector = array[0..1] of TPoint;
TMonth = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);
TDate = record

D: 1..31;
M: TMonth;
Y: 1900..1999;

end;
const

Origin: TPoint = (X: 0.0; Y: 0.0);
Line: TVector = ((X: -3.1; Y: 1.5), (X: 5.8; Y: 3.0));
SomeDay: TDate = (D: 2; M: Dec; Y: 1960);

Record constants cannot contain file-type values at any level.

Procedural constants
To declare a procedural constant, specify the name of a function or procedure that is 
compatible with the declared type of the constant. For example,

function Calc(X, Y: Integer): Integer;
begin
ƒ

end;

type TFunction = function(X, Y: Integer): Integer;
const MyFunction: TFunction = Calc;

Given these declarations, you can use the procedural constant MyFunction in a 
function call:

I := MyFunction(5, 7)

You can also assign the value nil to a procedural constant.

Pointer constants
When you declare a pointer constant, you must initialize it to a value that can be 
resolved—at least as a relative address—at compile time. There are three ways to do 
this: with the @ operator, with nil, and (if the constant is of type PChar) with a string 
literal. For example, if I is a global variable of type Integer, you can declare a constant 
like

const PI: ^Integer = @I;

The compiler can resolve this because global variables are part of the code segment. 
So are functions and global constants:

const PF: Pointer = @MyFunction;
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Because string literals are allocated as global constants, you can initialize a PChar 
constant with a string literal:

const WarningStr: PChar = 'Warning!';

Addresses of local (stack-allocated) and dynamic (heap-allocated) variables cannot 
be assigned to pointer constants. 
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6
Chapter6Procedures and functions

Procedures and functions, referred to collectively as routines, are self-contained 
statement blocks that can be called from different locations in a program. A function 
is a routine that returns a value when it executes. A procedure is a routine that does 
not return a value.

Function calls, because they return a value, can be used as expressions in 
assignments and operations. For example,

I := SomeFunction(X);

calls SomeFunction and assigns the result to I. Function calls cannot appear on the left 
side of an assignment statement.

Procedure calls—and, when extended syntax is enabled ({$X+}), function calls—can 
be used as complete statements. For example,

DoSomething;

calls the DoSomething routine; if DoSomething is a function, its return value is 
discarded.

Procedures and functions can call themselves recursively.

Declaring procedures and functions
When you declare a procedure or function, you specify its name, the number and 
type of parameters it takes, and, in the case of a function, the type of its return value; 
this part of the declaration is sometimes called the prototype, heading, or header. Then 
you write a block of code that executes whenever the procedure or function is called; 
this part is sometimes called the routine’s body or block.

The standard procedure Exit can occur within the body of any procedure or function. 
Exit halts execution of the routine where it occurs and immediately passes program 
control back to the point from which the routine was called.
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Procedure declarations

A procedure declaration has the form

procedure procedureName(parameterList); directives;
localDeclarations;
begin

statements
end;

where procedureName is any valid identifier, statements is a sequence of statements 
that execute when the procedure is called, and (parameterList), directives;, and 
localDeclarations; are optional.

• For information about the parameterList, see “Parameters” on page 6-11.

• For information about directives, see “Calling conventions” on page 6-4, “Forward 
and interface declarations” on page 6-6, “External declarations” on page 6-6, 
“Overloading procedures and functions” on page 6-8, and “Writing dynamically 
loadable libraries” on page 9-3. If you include more than one directive, separate 
them with semicolons.

• For information about localDeclarations, which declares local identifiers, see “Local 
declarations” on page 6-10.

Here is an example of a procedure declaration:

procedure NumString(N: Integer; var S: string);
var

V: Integer;
begin 

V := Abs(N);
S := '';
repeat

S := Chr(V mod 10 + Ord('0')) + S;
V := V div 10;

until V = 0;
if N < 0 then S := '-' + S;

end;

Given this declaration, you can call the NumString procedure like this:

NumString(17, MyString);

This procedure call assigns the value “17” to MyString (which must be a string 
variable).

Within a procedure’s statement block, you can use variables and other identifiers 
declared in the localDeclarations part of the procedure. You can also use the parameter 
names from the parameter list (like N and S in the example above); the parameter list 
defines a set of local variables, so don’t try to redeclare the parameter names in the 
localDeclarations section. Finally, you can use any identifiers within whose scope the 
procedure declaration falls.
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Function declarations

A function declaration is like a procedure declaration except that it specifies a return 
type and a return value. Function declarations have the form

function functionName(parameterList): returnType; directives;
localDeclarations;
begin

statements
end;

where functionName is any valid identifier, returnType is any type, statements is a 
sequence of statements that execute when the function is called, and (parameterList), 
directives;, and localDeclarations; are optional.

• For information about the parameterList, see “Parameters” on page 6-11.

• For information about directives, see “Calling conventions” on page 6-4, “Forward 
and interface declarations” on page 6-6, “External declarations” on page 6-6, 
“Overloading procedures and functions” on page 6-8, and “Writing dynamically 
loadable libraries” on page 9-3. If you include more than one directive, separate 
them with semicolons.

• For information about localDeclarations, which declares local identifiers, see “Local 
declarations” on page 6-10.

The function’s statement block is governed by the same rules that apply to 
procedures. Within the statement block, you can use variables and other identifiers 
declared in the localDeclarations part of the function, parameter names from the 
parameter list, and any identifiers within whose scope the function declaration falls. 
In addition, the function name itself acts as a special variable that holds the function’s 
return value, as does the predefined variable Result.

For example,

function WF: Integer;
begin

WF := 17;
end;

defines a constant function called WF that takes no parameters and always returns 
the integer value 17. This declaration is equivalent to

function WF: Integer;
begin

Result := 17;
end;

Here is a more complicated function declaration:

function Max(A: array of Real; N: Integer): Real;
var

X: Real;
I: Integer;

begin
X := A[0];
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for I := 1 to N - 1 do
if X < A[I] then X := A[I];

Max := X;
end;

You can assign a value to Result or to the function name repeatedly within a 
statement block, as long as you assign only values that match the declared return 
type. When execution of the function terminates, whatever value was last assigned to 
Result or to the function name becomes the function’s return value. For example,

function Power(X: Real; Y: Integer): Real;
var

I: Integer;
begin

Result := 1.0;
I := Y;
while I > 0 do
begin

if Odd(I) then Result := Result * X;
I := I div 2;
X := Sqr(X);

end;
end;

Result and the function name always represent the same value. Hence

function MyFunction: Integer;
begin

MyFunction := 5;
Result := Result * 2;
MyFunction := Result + 1;

end;

returns the value 11. But Result is not completely interchangeable with the function 
name. When the function name appears on the left side of an assignment statement, 
the compiler assumes that it is being used (like Result) to track the return value; when 
the function name appears anywhere else in the statement block, the compiler 
interprets it as a recursive call to the function itself. Result, on the other hand, can be 
used as a variable in operations, typecasts, set constructors, indexes, and calls to 
other routines.

As long as extended syntax is enabled ({$X+}), Result is implicitly declared in every 
function. Do not try to redeclare it.

If the function exits without assigning a value to Result or the function name, then the 
function’s return value is undefined. An exception to this rule is when the result type 
is a reference counted type such as a string or dynamic array. In the case of a 
reference-counted return type, the compiler initializes the value to 0 (an empty string 
or array). However, it is much safer if you always explicitly assign a return value.

Calling conventions

When you declare a procedure or function, you can specify a calling convention using 
one of the directives register, pascal, cdecl, stdcall, and safecall. For example,
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function MyFunction(X, Y: Real): Real; cdecl;
ƒ

Calling conventions determine the order in which parameters are passed to the 
routine. They also affect the removal of parameters from the stack, the use of registers 
for passing parameters, and error and exception handling. The default calling 
convention is register.

• The register and pascal conventions pass parameters from left to right; that is, the 
left most parameter is evaluated and passed first and the rightmost parameter is 
evaluated and passed last. The cdecl, stdcall, and safecall conventions pass 
parameters from right to left.

• For all conventions except cdecl, the procedure or function removes parameters 
from the stack upon returning. With the cdecl convention, the caller removes 
parameters from the stack when the call returns.

• The register convention uses up to three CPU registers to pass parameters, while 
the other conventions pass all parameters on the stack.

• The safecall convention implements exception “firewalls.” On Windows, this 
implements interprocess COM error notification.

The table below summarizes calling conventions.

The default register convention is the most efficient, since it usually avoids creation 
of a stack frame. (Access methods for published properties must use register.) The 
cdecl convention is useful when you call functions from shared libraries written in C 
or C++, while stdcall and safecall are recommended, in general, for calls to external 
code. On Windows, the operating system APIs are stdcall and safecall. Other 
operating systems generally use cdecl. (Note that stdcall is more efficient than cdecl.)

The safecall convention must be used for declaring dual-interface methods (see 
Chapter 10, “Object interfaces”). The pascal convention is maintained for backward 
compatibility. For more information on calling conventions, see Chapter 12, 
“Program control”.

The directives near, far, and export refer to calling conventions in 16-bit Windows 
programming. They have no effect in 32-bit applications and are maintained for 
backward compatibility only.

Table 6.1 Calling conventions

Directive Parameter order Clean-up Passes parameters in registers?

register Left-to-right Routine Yes

pascal Left-to-right Routine No

cdecl Right-to-left Caller No

stdcall Right-to-left Routine No

safecall Right-to-left Routine No
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Forward and interface declarations

The forward directive replaces the block, including local variable declarations and 
statements, in a procedure or function declaration. For example,

function Calculate(X, Y: Integer): Real; forward;

declares a function called Calculate. Somewhere after the forward declaration, the 
routine must be redeclared in a defining declaration that includes a block. The defining 
declaration for Calculate might look like this:

function Calculate;
ƒ { declarations }

begin
ƒ { statement block }

end;

Ordinarily, a defining declaration does not have to repeat the routine’s parameter list 
or return type, but if it does repeat them, they must match those in the forward 
declaration exactly (except that default parameters can be omitted). If the forward 
declaration specifies an overloaded procedure or function (see “Overloading 
procedures and functions” on page 6-8), then the defining declaration must repeat 
the parameter list.

A forward declaration and its defining declaration must appear in the same type 
declaration section. That is, you can’t add a new section (such as a var section or 
const section) between the forward declaration and the defining declaration. The 
defining declaration can be an external or assembler declaration, but it cannot be 
another forward declaration.

The purpose of a forward declaration is to extend the scope of a procedure or 
function identifier to an earlier point in the source code. This allows other procedures 
and functions to call the forward-declared routine before it is actually defined. 
Besides letting you organize your code more flexibly, forward declarations are 
sometimes necessary for mutual recursions.

The forward directive has no effect in the interface section of a unit. Procedure and 
function headers in the interface section behave like forward declarations and must 
have defining declarations in the implementation section. A routine declared in the 
interface section is available from anywhere else in the unit and from any other unit 
or program that uses the unit where it is declared.

External declarations

The external directive, which replaces the block in a procedure or function 
declaration, allows you to call routines that are compiled separately from your 
program. External routines can come from object files or dynamically loadable 
libraries.

When importing a C++ function that takes a variable number of parameters, use the 
varargs directive. For example,

function printf(Format: PChar): Integer; cdecl; varargs;
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The varargs directive works only with external routines and only with the cdecl 
calling convention.

Linking to object files
To call routines from a separately compiled object file, first link the object file to your 
application using the $L (or $LINK) compiler directive. For example,

On Windows: {$L BLOCK.OBJ}

On Linux: {$L block.o}

links BLOCK.OBJ (Windows) or block.o (Linux) into the program or unit in which it 
occurs. Next, declare the functions and procedures that you want to call:

procedure MoveWord(var Source, Dest; Count: Integer); external;
procedure FillWord(var Dest; Data: Integer; Count: Integer); external;

Now you can call the MoveWord and FillWord routines from BLOCK.OBJ (Windows) 
or block.o (Linux).

Declarations like the ones above are frequently used to access external routines 
written in assembly language. You can also place assembly-language routines 
directly in your Object Pascal source code; for more information, see Chapter 13, 
“Inline assembly code”.

Importing functions from libraries
To import routines from a dynamically loadable library (.so or .DLL), attach a 
directive of the form

external stringConstant;

to the end of a normal procedure or function header, where stringConstant is the 
name of the library file in single quotation marks. For example, on Windows

function SomeFunction(S: string): string; external 'strlib.dll';

imports a function called SomeFunction from strlib.dll.

On Linux,

function SomeFunction(S: string): string; external 'strlib.so';

imports a function called SomeFunction from strlib.so.

You can import a routine under a different name from the one it has in the library. If 
you do this, specify the original name in the external directive:

external stringConstant1 name stringConstant2;

where the first stringConstant gives the name of the library file and the second 
stringConstant is the routine’s original name. 

On Windows: For example, the following declaration imports a function from 
user32.dll (part of the Windows API).

function MessageBox(HWnd: Integer; Text, Caption: PChar; Flags: Integer): Integer; 
stdcall; external 'user32.dll' name 'MessageBoxA';

The function’s original name is MessageBoxA, but it is imported as MessageBox.
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Instead of a name, you can use a number to identify the routine you want to import:

external stringConstant index integerConstant;

where integerConstant is the routine’s index in the export table.

On Linux: For example, the following declaration imports a standard system 
function from libc.so.6.

function OpenFile(const PathName: PChar; Flags: Integer): Integer; cdecl; 
external 'libc.so.6' name 'open';

The function’s original name is open, but it is imported as OpenFile.

In your importing declaration, be sure to match the exact spelling and case of the 
routine’s name. Later, when you call the imported routine, the name is case-
insensitive.

For more information about libraries, see Chapter 9, “Libraries and packages”.

Overloading procedures and functions

You can declare more than one routine in the same scope with the same name. This is 
called overloading. Overloaded routines must be declared with the overload directive 
and must have distinguishing parameter lists. For example, consider the declarations

function Divide(X, Y: Real): Real; overload;
begin

Result := X/Y;
end;

function Divide(X, Y: Integer): Integer; overload;
begin

Result := X div Y;
end;

These declarations create two functions, both called Divide, that take parameters of 
different types. When you call Divide, the compiler determines which function to 
invoke by looking at the actual parameters passed in the call. For example, 
Divide(6.0, 3.0) calls the first Divide function, because its arguments are real-valued.

You can pass to an overloaded routine parameters that are not identical in type with 
those in any of the routine’s declarations, but that are assignment-compatible with 
the parameters in more than one declaration. This happens most frequently when a 
routine is overloaded with different integer types or different real types—for 
example,

procedure Store(X: Longint); overload;
procedure Store(X: Shortint); overload;

In these cases, when it is possible to do so without ambiguity, the compiler invokes 
the routine whose parameters are of the type with the smallest range that 
accommodates the actual parameters in the call. (Remember that real-valued 
constant expressions are always of type Extended.)
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Overloaded routines must be distinguished by the number of parameters they take 
or the types of their parameters. Hence the following pair of declarations causes a 
compilation error.

function Cap(S: string): string; overload;
ƒ

procedure Cap(var Str: string); overload;
ƒ

But the declarations

function Func(X: Real; Y: Integer): Real; overload;
ƒ

function Func(X: Integer; Y: Real): Real; overload;
ƒ

are legal.

When an overloaded routine is declared in a forward or interface declaration, the 
defining declaration must repeat the routine’s parameter list.

The compiler can distinguish between overloaded functions that contain AnsiString/
PChar and WideString/WideChar parameters in the same parameter position.  
String constants or literals passed into such an overload situation are translated into 
the native string or character type, which is AnsiString/PChar.

  procedure test(const S: String);  overload;
  procedure test(const W: WideString); overload;

var
      a: string;
      b: widestring;
  begin
     a := 'a';
     b := 'b';
     test(a);    // calls String version
     test(b);    // calls WideString version
     test('abc');    // calls String version
     test(WideString('abc'));   // calls widestring version
  end;

Variants can also be used as parameters in overloaded function declarations. Variant 
is considered more general than any simple type.  Preference is always given to exact 
type matches over variant matches. If a variant is passed into such an overload 
situation, and an overload that takes a variant exists in that parameter position, it is 
considered to be an exact match for the Variant type.

This can cause some minor side effects with float types.  Float types are matched by 
size.  If there is no exact match for the float variable passed to the overload call but a 
variant parameter is available, the variant is taken over any smaller float type.

For example:

  procedure foo(i: integer); overload;
  procedure foo(d: double); overload;
  procedure foo(v: variant); overload;
 var
    v: variant;
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 begin
    foo(1);       // integer version
    foo(v);       // variant version
    foo(1.2);    // variant version (float literals -> extended precision)
  end;

This example calls the variant version of foo, not the double version, because the 1.2 
constant is implicitly an extended type and extended is not an exact match for 
double.  Extended is also not an exact match for variant, but variant is considered a 
more general type (whereas double is a smaller type than extended).

foo(Double(1.2));

This typecast does not work. You should use typed consts instead.

const  d: double = 1.2;
  begin
     foo(d);
  end;

The above code works correctly, and calls the double version.

const  s: single = 1.2;
  begin
     foo(s);
  end;

The above code also calls the double version of foo.  Single is a better fit to double 
than to variant.

When declaring a set of overloaded routines, the best way to avoid float promotion to 
variant is to declare a version of your overloaded function for each float type (Single, 
Double, Extended) along with the variant version.

If you use default parameters in overloaded routines, be careful of ambiguous 
parameter signatures. For more information, see “Default parameters and 
overloaded routines” on page 6-19.

You can limit the potential effects of overloading by qualifying a routine’s name 
when you call it. For example, Unit1.MyProcedure(X, Y) can call only routines declared 
in Unit1; if no routine in Unit1 matches the name and parameter list in the call, an 
error results.

For information about distributing overloaded methods in a class hierarchy, see 
“Overloading methods” on page 7-12. For information about exporting overloaded 
routines from a shared library, see “The exports clause” on page 9-5.

Local declarations

The body of a function or procedure often begins with declarations of local variables 
used in the routine’s statement block. These declarations can also include constants, 
types, and other routines. The scope of a local identifier is limited to the routine 
where it is declared.
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Nested routines
Functions and procedures sometimes contain other functions and procedures within 
the local-declarations section of their blocks. For example, the following declaration 
of a procedure called DoSomething contains a nested procedure.

procedure DoSomething(S: string);
var

X, Y: Integer;

procedure NestedProc(S: string);
begin

ƒ
end;

begin
ƒ

NestedProc(S);
ƒ

end;

The scope of a nested routine is limited to the procedure or function in which it is 
declared. In our example, NestedProc can be called only within DoSomething.

For real examples of nested routines, look at the DateTimeToString procedure, the 
ScanDate function, and other routines in the SysUtils unit.

Parameters
Most procedure and function headers include a parameter list. For example, in the 
header

function Power(X: Real; Y: Integer): Real;

the parameter list is (X: Real; Y: Integer).

A parameter list is a sequence of parameter declarations separated by semicolons and 
enclosed in parentheses. Each declaration is a comma-delimited series of parameter 
names, followed in most cases by a colon and a type identifier, and in some cases by 
the = symbol and a default value. Parameter names must be valid identifiers. Any 
declaration can be preceded by one of the reserved words var, const, and out. 
Examples:

(X, Y: Real)
(var S: string; X: Integer)
(HWnd: Integer; Text, Caption: PChar; Flags: Integer)
(const P; I: Integer)

The parameter list specifies the number, order, and type of parameters that must be 
passed to the routine when it is called. If a routine does not take any parameters, omit 
the identifier list and the parentheses in its declaration:

procedure UpdateRecords;
begin
ƒ

end;
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Within the procedure or function body, the parameter names (X and Y in the first 
example above) can be used as local variables. Do not redeclare the parameter names 
in the local declarations section of the procedure or function body.

Parameter semantics

Parameters are categorized in several ways:

• Every parameter is classified as value, variable, constant, or out. Value parameters 
are the default; the reserved words var, const, and out indicate variable, constant, 
and out parameters, respectively.

• Value parameters are always typed, while constant, variable, and out parameters 
can be either typed or untyped.

• Special rules apply to array parameters. See “Array parameters” on page 6-15.

Files and instances of structured types that contain files can be passed only as 
variable (var) parameters.

Value and variable parameters
Most parameters are either value parameters (the default) or variable (var) 
parameters. Value parameters are passed by value, while variable parameters are 
passed by reference. To see what this means, consider the following functions.

function DoubleByValue(X: Integer): Integer; // X is a value parameter
begin

X := X * 2;
Result := X;

end;

function DoubleByRef(var X: Integer): Integer; // X is a variable parameter
begin

X := X * 2;
Result := X;

end;

These functions return the same result, but only the second one—DoubleByRef—can 
change the value of a variable passed to it. Suppose we call the functions like this:

var
I, J, V, W: Integer;

begin
I := 4;
V := 4;
J := DoubleByValue(I); // J = 8, I = 4
W := DoubleByRef(V); // W = 8, V = 8

end;

After this code executes, the variable I, which was passed to DoubleByValue, has the 
same value we initially assigned to it. But the variable V, which was passed to 
DoubleByRef, has a different value.

A value parameter acts like a local variable that gets initialized to the value passed in 
the procedure or function call. If you pass a variable as a value parameter, the 
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procedure or function creates a copy of it; changes made to the copy have no effect on 
the original variable and are lost when program execution returns to the caller.

A variable parameter, on the other hand, acts like a pointer rather than a copy. 
Changes made to the parameter within the body of a function or procedure persist 
after program execution returns to the caller and the parameter name itself has gone 
out of scope.

Even if the same variable is passed in two or more var parameters, no copies are 
made. This is illustrated in the following example.

procedure AddOne(var X, Y: Integer);
begin

X := X + 1;
Y := Y + 1;

end;

var I: Integer;
begin

I := 1;
AddOne(I, I);

end;

After this code executes, the value of I is 3.

If a routine’s declaration specifies a var parameter, you must pass an assignable 
expression—that is, a variable, typed constant (in the {$J+} state), dereferenced 
pointer, field, or indexed variable—to the routine when you call it. To use our 
previous examples, DoubleByRef(7) produces an error, although DoubleByValue(7) is 
legal.

Indexes and pointer dereferences passed in var parameters—for example, 
DoubleByRef(MyArray[I])—are evaluated once, before execution of the routine.

Constant parameters
A constant (const) parameter is like a local constant or read-only variable. Constant 
parameters are similar to value parameters, except that you can’t assign a value to a 
constant parameter within the body of a procedure or function, nor can you pass one 
as a var parameter to another routine. (But when you pass an object reference as a 
constant parameter, you can still modify the object’s properties.)

Using const allows the compiler to optimize code for structured- and string-type 
parameters. It also provides a safeguard against unintentionally passing a parameter 
by reference to another routine.

Here, for example, is the header for the CompareStr function in the SysUtils unit:

function CompareStr(const S1, S2: string): Integer;

Because S1 and S2 are not modified in the body of CompareStr, they can be declared 
as constant parameters.

Out parameters
An out parameter, like a variable parameter, is passed by reference. With an out 
parameter, however, the initial value of the referenced variable is discarded by the 
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routine it is passed to. The out parameter is for output only; that is, it tells the 
function or procedure where to store output, but doesn’t provide any input.

For example, consider the procedure heading

procedure GetInfo(out Info: SomeRecordType);

When you call GetInfo, you must pass it a variable of type SomeRecordType:

var MyRecord: SomeRecordType;
ƒ

GetInfo(MyRecord);

But you’re not using MyRecord to pass any data to the GetInfo procedure; MyRecord is 
just a container where you want GetInfo to store the information it generates. The call 
to GetInfo immediately frees the memory used by MyRecord, before program control 
passes to the procedure.

Out parameters are frequently used with distributed-object models like COM and 
CORBA. In addition, you should use out parameters when you pass an uninitialized 
variable to a function or procedure.

Untyped parameters
You can omit type specifications when declaring var, const, and out parameters. 
(Value parameters must be typed.) For example,

procedure TakeAnything(const C);

declares a procedure called TakeAnything that accepts a parameter of any type. When 
you call such a routine, you cannot pass it a numeral or untyped numeric constant.

Within a procedure or function body, untyped parameters are incompatible with 
every type. To operate on an untyped parameter, you must cast it. In general, the 
compiler cannot verify that operations on untyped parameters are valid.

The following example uses untyped parameters in a function called Equal that 
compares a specified number of bytes of any two variables.

function Equal(var Source, Dest; Size: Integer): Boolean;
type

TBytes = array[0..MaxInt - 1] of Byte;
var

N: Integer;
begin

N := 0;
while (N < Size) and (TBytes(Dest)[N] = TBytes(Source)[N]) do

Inc(N);
Equal := N = Size;

end;

Given the declarations

type
TVector = array[1..10] of Integer;
TPoint = record

X, Y: Integer;
end;
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var
Vec1, Vec2: TVector;
N: Integer;
P: TPoint;

you could make the following calls to Equal:

Equal(Vec1, Vec2, SizeOf(TVector)) // compare Vec1 to Vec2
Equal(Vec1, Vec2, SizeOf(Integer) * N) // compare first N elements of Vec1 and Vec2
Equal(Vec1[1], Vec1[6], SizeOf(Integer) * 5) // compare first 5 to last 5 elements of Vec1
Equal(Vec1[1], P, 4) // compare Vec1[1] to P.X and Vec1[2] to P.Y

String parameters

When you declare routines that take short-string parameters, you cannot include 
length specifiers in the parameter declarations. That is, the declaration

procedure Check(S: string[20]); // syntax error

causes a compilation error. But

type TString20 = string[20];
procedure Check(S: TString20);

is valid. The special identifier OpenString can be used to declare routines that take 
short-string parameters of varying length:

procedure Check(S: OpenString);

When the {$H–} and {$P+} compiler directives are both in effect, the reserved word 
string is equivalent to OpenString in parameter declarations.

Short strings, OpenString, $H, and $P are supported for backward compatibility only. 
In new code, you can avoid these considerations by using long strings.

Array parameters

When you declare routines that take array parameters, you cannot include index type 
specifiers in the parameter declarations. That is, the declaration

procedure Sort(A: array[1..10] of Integer); // syntax error

causes a compilation error. But

type TDigits = array[1..10] of Integer;
procedure Sort(A: TDigits);

is valid. For most purposes, however, open array parameters are a better solution.

Open array parameters
Open array parameters allow arrays of different sizes to be passed to the same 
procedure or function. To define a routine with an open array parameter, use the 
syntax array of type (rather than array[X..Y] of type) in the parameter declaration. 
For example,

function Find(A: array of Char): Integer;
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declares a function called Find that takes a character array of any size and returns an 
integer.

Note The syntax of open array parameters resembles that of dynamic array types, but they 
do not mean the same thing. The example above creates a function that takes any 
array of Char elements, including (but not limited to) dynamic arrays. To declare 
parameters that must be dynamic arrays, you need to specify a type identifier:

type TDynamicCharArray = array of Char;
function Find(A: TDynamicCharArray): Integer;

For information about dynamic arrays, see “Dynamic arrays” on page 5-19.

Within the body of a routine, open array parameters are governed by the following 
rules.

• They are always zero-based. The first element is 0, the second element is 1, and so 
forth. The standard Low and High functions return 0 and Length–1, respectively. 
The SizeOf function returns the size of the actual array passed to the routine.

• They can be accessed by element only. Assignments to an entire open array 
parameter are not allowed.

• They can be passed to other procedures and functions only as open array 
parameters or untyped var parameters. They cannot be passed to SetLength.

• Instead of an array, you can pass a variable of the open array parameter’s base 
type. It will be treated as an array of length 1.

When you pass an array as an open array value parameter, the compiler creates a 
local copy of the array within the routine’s stack frame. Be careful not to overflow the 
stack by passing large arrays.

The following examples use open array parameters to define a Clear procedure that 
assigns zero to each element in an array of reals and a Sum function that computes 
the sum of the elements in an array of reals.

procedure Clear(var A: array of Real);
var

I: Integer;
begin

for I := 0 to High(A) do A[I] := 0;
end;

function Sum(const A: array of Real): Real;
var

I: Integer;
S: Real;

begin
S := 0;
for I := 0 to High(A) do S := S + A[I];
Sum := S;

end;

When you call routines that use open array parameters, you can pass open array 
constructors to them. See “Open array constructors” on page 6-20.
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Variant open array parameters
Variant open array parameters allow you to pass an array of differently typed 
expressions to a single procedure or function. To define a routine with a variant open 
array parameter, specify array of const as the parameter’s type. Thus

procedure DoSomething(A: array of const);

declares a procedure called DoSomething that can operate on heterogeneous arrays.

The array of const construction is equivalent to array of TVarRec. TVarRec, declared 
in the System unit, represents a record with a variant part that can hold values of 
integer, Boolean, character, real, string, pointer, class, class reference, interface, and 
variant types. TVarRec’s VType field indicates the type of each element in the array. 
Some types are passed as pointers rather than values; in particular, long strings are 
passed as Pointer and must be typecast to string. See the online Help on TVarRec for 
details.

The following example uses a variant open array parameter in a function that creates 
a string representation of each element passed to it and concatenates the results into a 
single string. The string-handling routines called in this function are defined in 
SysUtils.

function MakeStr(const Args: array of const): string;
const

BoolChars: array[Boolean] of Char = ('F', 'T');
var

I: Integer;
begin

Result := '';
for I := 0 to High(Args) do

with Args[I] do
case VType of
vtInteger: Result := Result + IntToStr(VInteger);
vtBoolean: Result := Result + BoolChars[VBoolean];
vtChar: Result := Result + VChar;
vtExtended: Result := Result + FloatToStr(VExtended^);
vtString: Result := Result + VString^;
vtPChar: Result := Result + VPChar;
vtObject: Result := Result + VObject.ClassName;
vtClass: Result := Result + VClass.ClassName;
vtAnsiString: Result := Result + string(VAnsiString);
vtCurrency: Result := Result + CurrToStr(VCurrency^);
vtVariant: Result := Result + string(VVariant^);
vtInt64: Result := Result + IntToStr(VInt64^);

end;
end;

We can call this function using an open array constructor (see “Open array 
constructors” on page 6-20). For example,

MakeStr(['test', 100, ' ', True, 3.14159, TForm])

returns the string “test100 T3.14159TForm”.
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Default parameters

You can specify default parameter values in a procedure or function heading. Default 
values are allowed only for typed const and value parameters. To provide a default 
value, end the parameter declaration with the = symbol followed by a constant 
expression that is assignment-compatible with the parameter’s type.

For example, given the declaration

procedure FillArray(A: array of Integer; Value: Integer = 0);

the following procedure calls are equivalent.

FillArray(MyArray);
FillArray(MyArray, 0);

A multiple-parameter declaration cannot specify a default value. Thus, while

function MyFunction(X: Real = 3.5; Y: Real = 3.5): Real;

is legal,

function MyFunction(X, Y: Real = 3.5): Real; // syntax error

is not.

Parameters with default values must occur at the end of the parameter list. That is, all 
parameters following the first declared default value must also have default values. 
So the following declaration is illegal.

procedure MyProcedure(I: Integer = 1; S: string); // syntax error

Default values specified in a procedural type override those specified in an actual 
routine. Thus, given the declarations

type TResizer = function(X: Real; Y: Real = 1.0): Real;
function Resizer(X: Real; Y: Real = 2.0): Real;
var

F: TResizer;
N: Real;

the statements

F := Resizer;
F(N);

result in the values (N, 1.0) being passed to Resizer.

Default parameters are limited to values that can be specified by a constant 
expression. (See “Constant expressions” on page 5-41.) Hence parameters of a 
dynamic-array, procedural, class, class-reference, or interface type can have no value 
other than nil as their default. Parameters of a record, variant, file, static-array, or 
object type cannot have default values at all.

For information about calling routines with default parameter values, see “Calling 
procedures and functions” on page 6-19.
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Default parameters and overloaded routines
If you use default parameter values in an overloaded routine, avoid ambiguous 
parameter signatures. Consider, for example, the following.

procedure Confused(I: Integer); overload;
ƒ

procedure Confused(I: Integer; J: Integer = 0); overload;
ƒ

Confused(X); // Which procedure is called?

In fact, neither procedure is called. This code generates a compilation error.

Default parameters in forward and interface declarations
If a routine has a forward declaration or appears in the interface section of a unit, 
default parameter values—if there are any—must be specified in the forward or 
interface declaration. In this case, the default values can be omitted from the defining 
(implementation) declaration; but if the defining declaration includes default values, 
they must match those in the forward or interface declaration exactly.

Calling procedures and functions
When you call a procedure or function, program control passes from the point where 
the call is made to the body of the routine. You can make the call using the routine’s 
declared name (with or without qualifiers) or using a procedural variable that points 
to the routine. In either case, if the routine is declared with parameters, your call to it 
must pass parameters that correspond in order and type to the routine’s parameter 
list. The parameters you pass to a routine are called actual parameters, while the 
parameters in the routine’s declaration are called formal parameters.

When calling a routine, remember that

• expressions used to pass typed const and value parameters must be assignment-
compatible with the corresponding formal parameters.

• expressions used to pass var and out parameters must be identically typed with 
the corresponding formal parameters, unless the formal parameters are untyped.

• only assignable expressions can be used to pass var and out parameters.

• if a routine’s formal parameters are untyped, numerals and true constants with 
numeric values cannot be used as actual parameters.

When you call a routine that uses default parameter values, all actual parameters 
following the first accepted default must also use the default values; calls of the form 
SomeFunction(,,X) are not legal.

You can omit parentheses when passing all and only the default parameters to a 
routine. For example, given the procedure

procedure DoSomething(X: Real = 1.0; I: Integer = 0; S: string = '');

the following calls are equivalent.

DoSomething();
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DoSomething;

Open array constructors

Open array constructors allow you to construct arrays directly within function and 
procedure calls. They can be passed only as open array parameters or variant open 
array parameters.

An open array constructor, like a set constructor, is a sequence of expressions 
separated by commas and enclosed in brackets. 

For example, given the declarations

var I, J: Integer;
procedure Add(A: array of Integer);

you could call the Add procedure with the statement

Add([5, 7, I, I + J]);

This is equivalent to

var Temp: array[0..3] of Integer;
ƒ

Temp[0] := 5;
Temp[1] := 7;
Temp[2] := I;
Temp[3] := I + J;
Add(Temp);

Open array constructors can be passed only as value or const parameters. The 
expressions in a constructor must be assignment-compatible with the base type of the 
array parameter. In the case of a variant open array parameter, the expressions can be 
of different types.
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Chapter7Classes and objects

A class, or class type, defines a structure consisting of fields, methods, and properties. 
Instances of a class type are called objects. The fields, methods, and properties of a 
class are called its components or members.

• A field is essentially a variable that is part of an object. Like the fields of a record, a 
class’s fields represent data items that exist in each instance of the class.

• A method is a procedure or function associated with a class. Most methods 
operate on objects—that is, instances of a class. Some methods (called class 
methods) operate on class types themselves.

• A property is an interface to data associated with an object (often stored in a field). 
Properties have access specifiers, which determine how their data is read and 
modified. From other parts of a program—outside of the object itself—a property 
appears in most respects like a field.

Objects are dynamically allocated blocks of memory whose structure is determined 
by their class type. Each object has a unique copy of every field defined in the class, 
but all instances of a class share the same methods. Objects are created and destroyed 
by special methods called constructors and destructors.

A variable of a class type is actually a pointer that references an object. Hence more 
than one variable can refer to the same object. Like other pointers, class-type 
variables can hold the value nil. But you don’t have to explicitly dereference a class-
type variable to access the object it points to. For example, SomeObject.Size := 100 
assigns the value 100 to the Size property of the object referenced by SomeObject; you 
would not write this as SomeObject^.Size := 100.
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Class types
A class type must be declared and given a name before it can be instantiated. (You 
cannot define a class type within a variable declaration.) Declare classes only in the 
outermost scope of a program or unit, not in a procedure or function declaration.

A class type declaration has the form

type className = class (ancestorClass)
memberList

end;

where className is any valid identifier, (ancestorClass) is optional, and memberList 
declares members—that is, fields, methods, and properties—of the class. If you omit 
(ancestorClass), then the new class inherits directly from the predefined TObject class. 
If you include (ancestorClass) and memberList is empty, you can omit end. A class type 
declaration can also include a list of interfaces implemented by the class; see 
“Implementing interfaces” on page 10-4.

Methods appear in a class declaration as function or procedure headings, with no 
body. Defining declarations for each method occur elsewhere in the program.

For example, here is the declaration of the TMemoryStream class from the Classes unit.

type
TMemoryStream = class(TCustomMemoryStream)
  private
    FCapacity: Longint;
    procedure SetCapacity(NewCapacity: Longint);
  protected
    function Realloc(var NewCapacity: Longint): Pointer; virtual;
    property Capacity: Longint read FCapacity write SetCapacity;
  public
    destructor Destroy; override;
    procedure Clear;
    procedure LoadFromStream(Stream: TStream);
    procedure LoadFromFile(const FileName: string);
    procedure SetSize(NewSize: Longint); override;
    function Write(const Buffer; Count: Longint): Longint; override;
  end;

TMemoryStream descends from TStream (in the Classes unit), inheriting most of its 
members. But it defines—or redefines—several methods and properties, including its 
destructor method, Destroy. Its constructor, Create, is inherited without change from 
TObject, and so is not redeclared. Each member is declared as private, protected, or 
public (this class has no published members); for explanations of these terms, see 
“Visibility of class members” on page 7-4.

Given this declaration, you can create an instance of TMemoryStream as follows:

var stream: TMemoryStream;
stream := TMemoryStream.Create;
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Inheritance and scope

When you declare a class, you can specify its immediate ancestor. For example,

type TSomeControl = class(TControl);

declares a class called TSomeControl that descends from TControl. A class type 
automatically inherits all of the members from its immediate ancestor. Each class can 
declare new members and can redefine inherited ones, but a class cannot remove 
members defined in an ancestor. Hence TSomeControl contains all of the members 
defined in TControl and in each of TControl‘s ancestors.

The scope of a member’s identifier starts at the point where the member is declared, 
continues to the end of the class declaration, and extends over all descendants of the 
class and the blocks of all methods defined in the class and its descendants.

TObject and TClass
The TObject class, declared in the System unit, is the ultimate ancestor of all other 
classes. TObject defines only a handful of methods, including a basic constructor and 
destructor. In addition to TObject, the System unit declares the class-reference type 
TClass:

TClass = class of TObject;

For more information about TObject, see the online help. For more information about 
class-reference types, see “Class references” on page 7-23.

If the declaration of a class type doesn’t specify an ancestor, the class inherits directly 
from TObject. Thus

type TMyClass = class
ƒ

end;

is equivalent to

type TMyClass = class(TObject)
ƒ

end;

The latter form is recommended for readability.

Compatibility of class types
A class type is assignment-compatible with its ancestors. Hence a variable of a class 
type can reference an instance of any descendant type. For example, given the 
declarations

type
TFigure = class(TObject);
TRectangle = class(TFigure);
TSquare = class(TRectangle);

var
Fig: TFigure;

the variable Fig can be assigned values of type TFigure, TRectangle, and TSquare.
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Object types
As an alternative to class types, you can declare object types using the syntax

type objectTypeName = object (ancestorObjectType)
memberList

end;

where objectTypeName is any valid identifier, (ancestorObjectType) is optional, and 
memberList declares fields, methods, and properties. If (ancestorObjectType) is 
omitted, then the new type has no ancestor. Object types cannot have published 
members.

Since object types do not descend from TObject, they provide no built-in constructors, 
destructors, or other methods. You can create instances of an object type using the 
New procedure and destroy them with the Dispose procedure, or you can simply 
declare variables of an object type, just as you would with records.

Object types are supported for backward compatibility only. Their use is not 
recommended.

Visibility of class members

Every member of a class has an attribute called visibility, which is indicated by one of 
the reserved words private, protected, public, published, or automated. For 
example,

published property Color: TColor read GetColor write SetColor;

declares a published property called Color. Visibility determines where and how a 
member can be accessed, with private representing the least accessibility, protected 
representing an intermediate level of accessibility, and public, published, and 
automated representing the greatest accessibility.

If a member’s declaration appears without its own visibility specifier, the member 
has the same visibility as the one that precedes it. Members at the beginning of a class 
declaration that don’t have a specified visibility are by default published, provided 
the class is compiled in the {$M+} state or is derived from a class compiled in the 
{$M+} state; otherwise, such members are public.

For readability, it is best to organize a class declaration by visibility, placing all the 
private members together, followed by all the protected members, and so forth. This 
way each visibility reserved word appears at most once and marks the beginning of a 
new “section” of the declaration. So a typical class declaration should like this:

type
TMyClass = class(TControl)
private
ƒ { private declarations here}

protected
ƒ { protected declarations here }

public
ƒ { public declarations here }

published
ƒ { published declarations here }

end;



C l a s s e s  a n d  o b j e c t s 7-5

C l a s s  t y p e s

You can increase the visibility of a member in a descendant class by redeclaring it, 
but you cannot decrease its visibility. For example, a protected property can be made 
public in a descendant, but not private. Moreover, published members cannot 
become public in a descendant class. For more information, see “Property overrides 
and redeclarations” on page 7-22.

Private, protected, and public members
A private member is invisible outside of the unit or program where its class is 
declared. In other words, a private method cannot be called from another module, 
and a private field or property cannot be read or written to from another module. By 
placing related class declarations in the same module, you can give the classes access 
to one another’s private members without making those members more widely 
accessible.

A protected member is visible anywhere in the module where its class is declared and 
from any descendant class, regardless of the module where the descendant class 
appears. In other words, a protected method can be called, and a protected field or 
property read or written to, from the definition of any method belonging to a class 
that descends from the one where the protected member is declared. Members that 
are intended for use only in the implementation of derived classes are usually 
protected.

A public member is visible wherever its class can be referenced.

Published members
Published members have the same visibility as public members. The difference is that 
runtime type information (RTTI) is generated for published members. RTTI allows an 
application to query the fields and properties of an object dynamically and to locate 
its methods. RTTI is used to access the values of properties when saving and loading 
form files, to display properties in the Object Inspector, and to associate specific 
methods (called event handlers) with specific properties (called events).

Published properties are restricted to certain data types. Ordinal, string, class, 
interface, and method-pointer types can be published. So can set types, provided the 
upper and lower bounds of the base type have ordinal values between 0 and 31. (In 
other words, the set must fit in a byte, word, or double word.) Any real type except 
Real48 can be published. Properties of an array type (as distinct from array properties, 
discussed below) cannot be published.

Some properties, although publishable, are not fully supported by the streaming 
system. These include properties of record types, array properties of all publishable 
types (see “Array properties” on page 7-19), and properties of enumerated types that 
include anonymous values (see “Enumerated types with explicitly assigned 
ordinality” on page 5-7). If you publish a property of this kind, the Object Inspector 
won’t display it correctly, nor will the property’s value be preserved when objects are 
streamed to disk.

All methods are publishable, but a class cannot publish two or more overloaded 
methods with the same name. Fields can be published only if they are of a class or 
interface type.
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A class cannot have published members unless it is compiled in the {$M+} state or 
descends from a class compiled in the {$M+} state. Most classes with published 
members derive from TPersistent, which is compiled in the {$M+} state, so it is 
seldom necessary to use the $M directive.

Automated members
Automated members have the same visibility as public members. The difference is 
that Automation type information (required for Automation servers) is generated for 
automated members. Automated members typically appear only in Windows classes 
and is not recommended for Linux programming. The automated reserved word is 
maintained for backward compatibility. The TAutoObject class in the ComObj unit 
does not use automated.

The following restrictions apply to methods and properties declared as automated.

• The types of all properties, array property parameters, method parameters, and 
function results must be automatable. The automatable types are Byte, Currency, 
Real, Double, Longint, Integer, Single, Smallint, AnsiString, WideString, TDateTime, 
Variant, OleVariant, WordBool, and all interface types.

• Method declarations must use the default register calling convention. They can be 
virtual, but not dynamic.

• Property declarations can include access specifiers (read and write) but other 
specifiers (index, stored, default, and nodefault) are not allowed. Access 
specifiers must list a method identifier that uses the default register calling 
convention; field identifiers are not allowed.

• Property declarations must specify a type. Property overrides are not allowed.

The declaration of an automated method or property can include a dispid directive. 
Specifying an already used ID in a dispid directive causes an error. 

On Windows, this directive must be followed by an integer constant that specifies an 
Automation dispatch ID for the member. Otherwise, the compiler automatically 
assigns the member a dispatch ID that is one larger than the largest dispatch ID used 
by any method or property in the class and its ancestors. For more information about 
Automation (on Windows only), see “Automation objects (Windows only)” on 
page 10-10.

Forward declarations and mutually dependent classes

If the declaration of a class type ends with the word class and a semicolon—that is, if 
it has the form

type className = class;

with no ancestor or class members listed after the word class—then it is a forward 
declaration. A forward declaration must be resolved by a defining declaration of the 
same class within the same type declaration section. In other words, between a 
forward declaration and its defining declaration, nothing can occur except other type 
declarations.
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Forward declarations allow mutually dependent classes. For example,

type
TFigure = class; // forward declaration
TDrawing = class

Figure: TFigure;
ƒ

end;

TFigure = class // defining declaration
Drawing: TDrawing;
ƒ

end;

Do not confuse forward declarations with complete declarations of types that derive 
from TObject without declaring any class members.

type
TFirstClass = class; // this is a forward declaration

TSecondClass = class // this is a complete class declaration
end; //

TThirdClass = class(TObject); // this is a complete class declaration

Fields
A field is like a variable that belongs to an object. Fields can be of any type, including 
class types. (That is, fields can hold object references.) Fields are usually private.

To define a field member of a class, simply declare the field as you would a variable. 
All field declarations must occur before any property or method declarations. For 
example, the following declaration creates a class called TNumber whose only 
member, other than the methods is inherits from TObject, is an integer field called Int.

type TNumber = class
Int: Integer;

end;

Fields are statically bound; that is, references to them are fixed at compile time. To 
see what this means, consider the following code.

type
TAncestor = class

Value: Integer;
end;

TDescendant = class(TAncestor)
Value: string; // hides the inherited Value field

end;

var
MyObject: TAncestor;

begin
MyObject := TDescendant.Create;
MyObject.Value := 'Hello!'; // error
TDescendant(MyObject).Value := 'Hello!'; // works!

end;
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Although MyObject holds an instance of TDescendant, it is declared as TAncestor. The 
compiler therefore interprets MyObject.Value as referring to the (integer) field 
declared in TAncestor. Both fields, however, exist in the TDescendant object; the 
inherited Value is hidden by the new one, and can be accessed through a typecast.

Methods
A method is a procedure or function associated with a class. A call to a method 
specifies the object (or, if it is a class method, the class) that the method should 
operate on. For example,

SomeObject.Free

calls the Free method in SomeObject.

Method declarations and implementations

Within a class declaration, methods appear as procedure and function headings, 
which work like forward declarations. Somewhere after the class declaration, but 
within the same module, each method must be implemented by a defining 
declaration. For example, suppose the declaration of TMyClass includes a method 
called DoSomething:

type
TMyClass = class(TObject)

ƒ
procedure DoSomething;
ƒ

end;

A defining declaration for DoSomething must occur later in the module:

procedure TMyClass.DoSomething;
begin
ƒ

end;

While a class can be declared in either the interface or the implementation section of a 
unit, defining declarations for a class’s methods must be in the implementation 
section.

In the heading of a defining declaration, the method name is always qualified with 
the name of the class to which it belongs. The heading can repeat the parameter list 
from the class declaration; if it does so, the order, type, and names of the parameters 
must match exactly, and, if the method is a function, so must the return value.

Method declarations can include special directives that are not used with other 
functions or procedures. Directives should appear in the class declaration only, not in 
the defining declaration, and should always be listed in the following order:

reintroduce; overload; binding; calling convention; abstract; warning



C l a s s e s  a n d  o b j e c t s 7-9

M e t h o d s

where binding is virtual, dynamic, or override; calling convention is register, pascal, 
cdecl, stdcall, or safecall; and warning is platform, deprecated, or library.

Inherited
The reserved word inherited plays a special role in implementing polymorphic 
behavior. It can occur in method definitions, with or without an identifier after it.

If inherited is followed by the name of a member, it represents a normal method call 
or reference to a property or field—except that the search for the referenced member 
begins with the immediate ancestor of the enclosing method’s class. For example, 
when

inherited Create(...);

occurs in the definition of a method, it calls the inherited Create.

When inherited has no identifier after it, it refers to the inherited method with the 
same name as the enclosing method. In this case, inherited takes no explicit 
parameters, but passes to the inherited method the same parameters with which the 
enclosing method was called. For example,

inherited;

occurs frequently in the implementation of constructors. It calls the inherited 
constructor with the same parameters that were passed to the descendant.

Self
Within the implementation of a method, the identifier Self references the object in 
which the method is called. For example, here is the implementation of TCollection’s 
Add method in the Classes unit.

function TCollection.Add: TCollectionItem;
begin

Result := FItemClass.Create(Self);
end;

The Add method calls the Create method in the class referenced by the FItemClass 
field, which is always a TCollectionItem descendant. TCollectionItem.Create takes a 
single parameter of type TCollection, so Add passes it the TCollection instance object 
where Add is called. This is illustrated in the following code.

var MyCollection: TCollection;
ƒ

MyCollection.Add // MyCollection is passed to the TCollectionItem.Create method

Self is useful for a variety of reasons. For example, a member identifier declared in a 
class type might be redeclared in the block of one of the class’s methods. In this case, 
you can access the original member identifier as Self.Identifier.

For information about Self in class methods, see “Class methods” on page 7-25.
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Method binding

Methods can be static (the default), virtual, or dynamic. Virtual and dynamic methods 
can be overridden, and they can be abstract. These designations come into play when a 
variable of one class type holds a value of a descendant class type. They determine 
which implementation is activated when a method is called.

Static methods
Methods are by default static. When a static method is called, the declared (compile-
time) type of the class or object variable used in the method call determines which 
implementation to activate. In the following example, the Draw methods are static.

type
TFigure = class

procedure Draw;
end;
TRectangle = class(TFigure)

procedure Draw;
end;

Given these declarations, the following code illustrates the effect of calling a static 
method. In the second call to Figure.Draw, the Figure variable references an object of 
class TRectangle, but the call invokes the implementation of Draw in TFigure, because 
the declared type of the Figure variable is TFigure.

var
Figure: TFigure;
Rectangle: TRectangle;

begin
Figure := TFigure.Create;
Figure.Draw; // calls TFigure.Draw
Figure.Destroy;
Figure := TRectangle.Create;
Figure.Draw; // calls TFigure.Draw
TRectangle(Figure).Draw; // calls TRectangle.Draw
Figure.Destroy;
Rectangle := TRectangle.Create;
Rectangle.Draw; // calls TRectangle.Draw
Rectangle.Destroy;

end;

Virtual and dynamic methods
To make a method virtual or dynamic, include the virtual or dynamic directive in its 
declaration. Virtual and dynamic methods, unlike static methods, can be overridden in 
descendant classes. When an overridden method is called, the actual (runtime) type 
of the class or object used in the method call—not the declared type of the variable—
determines which implementation to activate.

To override a method, redeclare it with the override directive. An override 
declaration must match the ancestor declaration in the order and type of its 
parameters and in its result type (if any).



C l a s s e s  a n d  o b j e c t s 7-11

M e t h o d s

In the following example, the Draw method declared in TFigure is overridden in two 
descendant classes.

type
TFigure = class

procedure Draw; virtual;
end;
TRectangle = class(TFigure)

procedure Draw; override;
end;
TEllipse = class(TFigure)

procedure Draw; override;
end;

Given these declarations, the following code illustrates the effect of calling a virtual 
method through a variable whose actual type varies at runtime.

var
Figure: TFigure;

begin
Figure := TRectangle.Create;
Figure.Draw; // calls TRectangle.Draw
Figure.Destroy;
Figure := TEllipse.Create;
Figure.Draw; // calls TEllipse.Draw
Figure.Destroy;

end;

Only virtual and dynamic methods can be overridden. All methods, however, can be 
overloaded; see “Overloading methods”.

Virtual versus dynamic
Virtual and dynamic methods are semantically equivalent. They differ only in the 
implementation of method-call dispatching at runtime. Virtual methods optimize for 
speed, while dynamic methods optimize for code size.

In general, virtual methods are the most efficient way to implement polymorphic 
behavior. Dynamic methods are useful when a base class declares many overridable 
methods which are inherited by many descendant classes in an application, but only 
occasionally overridden.

Overriding versus hiding
If a method declaration specifies the same method identifier and parameter signature 
as an inherited method, but doesn’t include override, the new declaration merely 
hides the inherited one without overriding it. Both methods exist in the descendant 
class, where the method name is statically bound. For example,

type
T1 = class(TObject)

procedure Act; virtual;
end;
T2 = class(T1)

procedure Act; // Act is redeclared, but not overridden
end;
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var
SomeObject: T1;

begin
SomeObject := T2.Create;
SomeObject.Act; // calls T1.Act

end;

Reintroduce
The reintroduce directive suppresses compiler warnings about hiding previously 
declared virtual methods. For example,

procedure DoSomething; reintroduce; // the ancestor class also has a DoSomething method

Use reintroduce when you want to hide an inherited virtual method with a new one.

Abstract methods
An abstract method is a virtual or dynamic method that has no implementation in the 
class where it is declared. Its implementation is deferred to a descendant class. 
Abstract methods must be declared with the directive abstract after virtual or 
dynamic. For example,

procedure DoSomething; virtual; abstract;

You can call an abstract method only in a class or instance of a class in which the 
method has been overridden.

Overloading methods

A method can be redeclared using the overload directive. In this case, if the 
redeclared method has a different parameter signature from its ancestor, it overloads 
the inherited method without hiding it. Calling the method in a descendant class 
activates whichever implementation matches the parameters in the call.

If you overload a virtual method, use the reintroduce directive when you redeclare it 
in descendant classes. For example,

type
T1 = class(TObject)

procedure Test(I: Integer); overload; virtual;
end;
T2 = class(T1)

procedure Test(S: string); reintroduce; overload;
end;
ƒ

SomeObject := T2.Create;
SomeObject.Test('Hello!'); // calls T2.Test
SomeObject.Test(7); // calls T1.Test

Within a class, you cannot publish multiple overloaded methods with the same 
name. Maintenance of runtime type information requires a unique name for each 
published member.
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type
TSomeClass = class
published

function Func(P: Integer): Integer;
function Func(P: Boolean): Integer // error
ƒ

Methods that serve as property read or write specifiers cannot be overloaded.

The implementation of an overloaded method must repeat the parameter list from 
the class declaration. For more information about overloading, see “Overloading 
procedures and functions” on page 6-8.

Constructors

A constructor is a special method that creates and initializes instance objects. The 
declaration of a constructor looks like a procedure declaration, but it begins with the 
word constructor. Examples:

constructor Create;
constructor Create(AOwner: TComponent);

Constructors must use the default register calling convention. Although the 
declaration specifies no return value, a constructor returns a reference to the object it 
creates or is called in.

A class can have more than one constructor, but most have only one. It is 
conventional to call the constructor Create.

To create an object, call the constructor method in a class type. For example,

MyObject := TMyClass.Create;

This allocates storage for the new object on the heap, sets the values of all ordinal 
fields to zero, assigns nil to all pointer and class-type fields, and makes all string 
fields empty. Other actions specified in the constructor implementation are 
performed next; typically, objects are initialized based on values passed as 
parameters to the constructor. Finally, the constructor returns a reference to the 
newly allocated and initialized object. The type of the returned value is the same as 
the class type specified in the constructor call.

If an exception is raised during execution of a constructor that was invoked on a class 
reference, the Destroy destructor is automatically called to destroy the unfinished 
object.

When a constructor is called using an object reference (rather than a class reference), 
it does not create an object. Instead, the constructor operates on the specified object, 
executing only the statements in the constructor’s implementation, and then returns 
a reference to the object. A constructor is typically invoked on an object reference in 
conjunction with the reserved word inherited to execute an inherited constructor.

Here is an example of a class type and its constructor.
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type
TShape = class(TGraphicControl)
private

FPen: TPen;
FBrush: TBrush;
procedure PenChanged(Sender: TObject);
procedure BrushChanged(Sender: TObject);

public
constructor Create(Owner: TComponent); override;
destructor Destroy; override;
ƒ

end;

constructor TShape.Create(Owner: TComponent);
begin

inherited Create(Owner); // Initialize inherited parts
Width := 65; // Change inherited properties
Height := 65;
FPen := TPen.Create; // Initialize new fields
FPen.OnChange := PenChanged;
FBrush := TBrush.Create;
FBrush.OnChange := BrushChanged;

end;

The first action of a constructor is usually to call an inherited constructor to initialize 
the object’s inherited fields. The constructor then initializes the fields introduced in 
the descendant class. Because a constructor always clears the storage it allocates for a 
new object, all fields start with a value of zero (ordinal types), nil (pointer and class 
types), empty (string types), or Unassigned (variants). Hence there is no need to 
initialize fields in a constructor’s implementation except to nonzero or nonempty 
values.

When invoked through a class-type identifier, a constructor declared as virtual is 
equivalent to a static constructor. When combined with class-reference types, 
however, virtual constructors allow polymorphic construction of objects—that is, 
construction of objects whose types aren’t known at compile time. (See “Class 
references” on page 7-23.)

Destructors

A destructor is a special method that destroys the object where it is called and 
deallocates its memory. The declaration of a destructor looks like a procedure 
declaration, but it begins with the word destructor. Examples:

destructor Destroy;
destructor Destroy; override;

Destructors must use the default register calling convention. Although a class can 
have more than one destructor, it is recommended that each class override the 
inherited Destroy method and declare no other destructors.

To call a destructor, you must reference an instance object. For example,

MyObject.Destroy;
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When a destructor is called, actions specified in the destructor implementation are 
performed first. Typically, these consist of destroying any embedded objects and 
freeing resources that were allocated by the object. Then the storage that was 
allocated for the object is disposed of.

Here is an example of a destructor implementation.

destructor TShape.Destroy;
begin

FBrush.Free;
FPen.Free;
inherited Destroy;

end;

The last action in a destructor’s implementation is typically to call the inherited 
destructor to destroy the object’s inherited fields.

When an exception is raised during creation of an object, Destroy is automatically 
called to dispose of the unfinished object. This means that Destroy must be prepared 
to dispose of partially constructed objects. Because a constructor sets the fields of a 
new object to zero or empty values before performing other actions, class-type and 
pointer-type fields in a partially constructed object are always nil. A destructor 
should therefore check for nil values before operating on class-type or pointer-type 
fields. Calling the Free method (defined in TObject), rather than Destroy, offers a 
convenient way of checking for nil values before destroying an object.

Message methods

Message methods implement responses to dynamically dispatched messages. The 
message method syntax is supported on all platforms. The VCL uses message 
methods to respond to Windows messages. CLX does not use message methods to 
respond to system events.

A message method is created by including the message directive in a method 
declaration, followed by an integer constant between 1 and 49151 which specifies the 
message ID. For message methods in VCL controls, the integer constant can be one of 
the Windows message IDs defined, along with corresponding record types, in the 
Messages unit. A message method must be a procedure that takes a single var 
parameter. 

For example, on Windows:

type
TTextBox = class(TCustomControl)
private

procedure WMChar(var Message: TWMChar); message WM_CHAR;
ƒ

end;

For example, on Linux or for cross-platform programming, you would handle 
messages as follows:
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const
ID_REFRESH = $0001;

type
TTextBox = class(TCustomControl)
private

procedure Refresh(var Message: TMessageRecordType); message ID_REFRESH;
ƒ

end;

A message method does not have to include the override directive to override an 
inherited message method. In fact, it doesn’t have to specify the same method name 
or parameter type as the method it overrides. The message ID alone determines 
which message the method responds to and whether it is an override.

Implementing message methods
The implementation of a message method can call the inherited message method, as 
in this example (for Windows):

procedure TTextBox.WMChar(var Message: TWMChar);
begin

if Chr(Message.CharCode) = #13 then
ProcessEnter

else
inherited;

end;

On Linux or for cross-platform programming, you would write the same example as 
follows:

procedure TTextBox.Refresh(var Message: TMessageRecordType);
begin

if Chr(Message.Code) = #13 then
...

else
inherited;

end;

The inherited statement searches backward through the class hierarchy and invokes 
the first message method with the same ID as the current method, automatically 
passing the message record to it. If no ancestor class implements a message method 
for the given ID, inherited calls the DefaultHandler method originally defined in 
TObject.

The implementation of DefaultHandler in TObject simply returns without performing 
any actions. By overriding DefaultHandler, a class can implement its own default 
handling of messages. On Windows, the DefaultHandler method for VCL controls 
calls the Windows DefWindowProc function.

Message dispatching 
Message handlers are seldom called directly. Instead, messages are dispatched to an 
object using the Dispatch method inherited from TObject:

procedure Dispatch(var Message);
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The Message parameter passed to Dispatch must be a record whose first entry is a field 
of type Cardinal containing a message ID.

Dispatch searches backward through the class hierarchy (starting from the class of the 
object where it is called) and invokes the first message method for the ID passed to it. 
If no message method is found for the given ID, Dispatch calls DefaultHandler.

Properties
A property, like a field, defines an attribute of an object. But while a field is merely a 
storage location whose contents can be examined and changed, a property associates 
specific actions with reading or modifying its data. Properties provide control over 
access to an object’s attributes, and they allow attributes to be computed.

The declaration of a property specifies a name and a type, and includes at least one 
access specifier. The syntax of a property declaration is

property propertyName[indexes]: type index integerConstant specifiers;

where

• propertyName is any valid identifier.

• [indexes] is optional and is a sequence of parameter declarations separated by 
semicolons. Each parameter declaration has the form identifier1, ..., identifiern: 
type. For more information, see “Array properties” on page 7-19.

• type must be a predefined or previously declared data type. That is, property 
declarations like property Num: 0..9 ... are invalid.

• the index integerConstant clause is optional. For more information, see “Index 
specifiers” on page 7-20.

• specifiers is a sequence of read, write, stored, default (or nodefault), and 
implements specifiers. Every property declaration must have at least one read or 
write specifier. (For information about implements, see “Implementing interfaces 
by delegation” on page 10-6.)

Properties are defined by their access specifiers. Unlike fields, properties cannot be 
passed as var parameters, nor can the @ operator be applied to a property. The reason 
is that a property doesn’t necessarily exist in memory. It could, for instance, have a 
read method that retrieves a value from a database or generates a random value.

Property access

Every property has a read specifier, a write specifier, or both. These are called access 
specifiers and they have the form

read fieldOrMethod
write fieldOrMethod
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where fieldOrMethod is the name of a field or method declared in the same class as the 
property or in an ancestor class.

• If fieldOrMethod is declared in the same class, it must occur before the property 
declaration. If it is declared in an ancestor class, it must be visible from the 
descendant; that is, it cannot be a private field or method of an ancestor class 
declared in a different unit.

• If fieldOrMethod is a field, it must be of the same type as the property.

• If fieldOrMethod is a method, it cannot be dynamic and, if virtual, cannot be 
overloaded. Moreover, access methods for a published property must use the 
default register calling convention.

• In a read specifier, if fieldOrMethod is a method, it must be a parameterless 
function whose result type is the same as the property’s type. (An exception is the 
access method for an indexed property. See “Array properties” on page 7-19.)

• In a write specifier, if fieldOrMethod is a method, it must be a procedure that takes 
a single value or const parameter of the same type as the property (or two, if it is 
an array property).

For example, given the declaration

property Color: TColor read GetColor write SetColor;

the GetColor method must be declared as

function GetColor: TColor;

and the SetColor method must be declared as one of these:

procedure SetColor(Value: TColor);
procedure SetColor(const Value: TColor);

(The name of SetColor‘s parameter, of course, doesn’t have to be Value.)

When a property is referenced in an expression, its value is read using the field or 
method listed in the read specifier. When a property is referenced in an assignment 
statement, its value is written using the field or method listed in the write specifier.

The example below declares a class called TCompass with a published property called 
Heading. The value of Heading is read through the FHeading field and written through 
the SetHeading procedure.

type
THeading = 0..359;
TCompass = class(TControl)
private

FHeading: THeading;
procedure SetHeading(Value: THeading);

published
property Heading: THeading read FHeading write SetHeading;
ƒ

end;

Given this declaration, the statements

if Compass.Heading = 180 then GoingSouth;
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Compass.Heading := 135;

correspond to

if Compass.FHeading = 180 then GoingSouth;
Compass.SetHeading(135);

In the TCompass class, no action is associated with reading the Heading property; the 
read operation consists of retrieving the value stored in the FHeading field. On the 
other hand, assigning a value to the Heading property translates into a call to the 
SetHeading method, which, presumably, stores the new value in the FHeading field as 
well as performing other actions. For example, SetHeading might be implemented like 
this:

procedure TCompass.SetHeading(Value: THeading);
begin

if FHeading <> Value then
begin

FHeading := Value;
Repaint; // update user interface to reflect new value

end;
end;

A property whose declaration includes only a read specifier is a read-only property, 
and one whose declaration includes only a write specifier is a write-only property. It 
is an error to assign a value to a read-only property or use a write-only property in an 
expression.

Array properties

Array properties are indexed properties. They can represent things like items in a list, 
child controls of a control, and pixels of a bitmap.

The declaration of an array property includes a parameter list that specifies the 
names and types of the indexes. For example,

property Objects[Index: Integer]: TObject read GetObject write SetObject;
property Pixels[X, Y: Integer]: TColor read GetPixel write SetPixel;
property Values[const Name: string]: string read GetValue write SetValue;

The format of an index parameter list is the same as that of a procedure’s or 
function’s parameter list, except that the parameter declarations are enclosed in 
brackets instead of parentheses. Unlike arrays, which can use only ordinal-type 
indexes, array properties allow indexes of any type.

For array properties, access specifiers must list methods rather than fields. The 
method in a read specifier must be a function that takes the number and type of 
parameters listed in the property’s index parameter list, in the same order, and 
whose result type is identical to the property’s type. The method in a write specifier 
must be a procedure that takes the number and type of parameters listed in the 
property’s index parameter list, in the same order, plus an additional value or const 
parameter of the same type as the property.

For example, the access methods for the array properties above might be declared as
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function GetObject(Index: Integer): TObject;
function GetPixel(X, Y: Integer): TColor;
function GetValue(const Name: string): string;
procedure SetObject(Index: Integer; Value: TObject);
procedure SetPixel(X, Y: Integer; Value: TColor);
procedure SetValue(const Name, Value: string);

An array property is accessed by indexing the property identifier. For example, the 
statements

if Collection.Objects[0] = nil then Exit;
Canvas.Pixels[10, 20] := clRed;
Params.Values['PATH'] := 'C:\DELPHI\BIN'; 

correspond to

if Collection.GetObject(0) = nil then Exit;
Canvas.SetPixel(10, 20, clRed);
Params.SetValue('PATH', 'C:\DELPHI\BIN');

On Linux, you would use a path such as ‘/usr/local/bin’ in place of ‘C:\DELPHI\
BIN’ in the above example.

The definition of an array property can be followed by the default directive, in which 
case the array property becomes the default property of the class. For example,

type
TStringArray = class
public

property Strings[Index: Integer]: string ...; default;
ƒ

end;

If a class has a default property, you can access that property with the abbreviation 
object[index], which is equivalent to object.property[index]. For example, given the 
declaration above, StringArray.Strings[7] can be abbreviated to StringArray[7]. A class 
can have only one default property. Changing or hiding the default property in 
descendant classes may lead to unexpected behavior, since the compiler always 
determines an object’s default property statically.

Index specifiers

Index specifiers allow several properties to share the same access method while 
representing different values. An index specifier consists of the directive index 
followed by an integer constant between –2147483647 and 2147483647. If a property 
has an index specifier, its read and write specifiers must list methods rather than 
fields. For example,

type
TRectangle = class
private

FCoordinates: array[0..3] of Longint;
function GetCoordinate(Index: Integer): Longint;
procedure SetCoordinate(Index: Integer; Value: Longint);

public
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property Left: Longint index 0 read GetCoordinate write SetCoordinate;
property Top: Longint index 1 read GetCoordinate write SetCoordinate;
property Right: Longint index 2 read GetCoordinate write SetCoordinate;
property Bottom: Longint index 3 read GetCoordinate write SetCoordinate;
property Coordinates[Index: Integer]: Longint read GetCoordinate write SetCoordinate;
ƒ

end;

An access method for a property with an index specifier must take an extra value 
parameter of type Integer. For a read function, it must be the last parameter; for a 
write procedure, it must be the second-to-last parameter (preceding the parameter 
that specifies the property value). When a program accesses the property, the 
property’s integer constant is automatically passed to the access method.

Given the declaration above, if Rectangle is of type TRectangle, then

Rectangle.Right := Rectangle.Left + 100;

corresponds to

Rectangle.SetCoordinate(2, Rectangle.GetCoordinate(0) + 100);

Storage specifiers

The optional stored, default, and nodefault directives are called storage specifiers. 
They have no effect on program behavior, but control the way runtime type 
information (RTTI) is maintained. Specifically, storage specifiers determine whether 
or not to save the values of published properties in form files.

The stored directive must be followed by True, False, the name of a Boolean field, or 
the name of a parameterless method that returns a Boolean value. For example,

property Name: TComponentName read FName write SetName stored False;

If a property has no stored directive, it is treated as if stored True were specified.

The default directive must be followed by a constant of the same type as the 
property. For example,

property Tag: Longint read FTag write FTag default 0;

To override an inherited default value without specifying a new one, use the 
nodefault directive. The default and nodefault directives are supported only for 
ordinal types and for set types, provided the upper and lower bounds of the set’s 
base type have ordinal values between 0 and 31; if such a property is declared 
without default or nodefault, it is treated as if nodefault were specified. For reals, 
pointers, and strings, there is an implicit default value of 0, nil, and '' (the empty 
string), respectively.

When saving a component’s state, the storage specifiers of the component’s 
published properties are checked. If a property’s current value is different from its 
default value (or if there is no default value) and the stored specifier is True, then the 
property’s value is saved. Otherwise, the property’s value is not saved.
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Note Storage specifiers are not supported for array properties. The default directive has a 
different meaning when used in an array property declaration. See “Array 
properties” on page 7-19.

Property overrides and redeclarations

A property declaration that doesn’t specify a type is called a property override. 
Property overrides allow you to change a property’s inherited visibility or specifiers. 
The simplest override consists only of the reserved word property followed by an 
inherited property identifier; this form is used to change a property’s visibility. For 
example, if an ancestor class declares a property as protected, a derived class can 
redeclare it in a public or published section of the class. Property overrides can 
include read, write, stored, default, and nodefault directives; any such directive 
overrides the corresponding inherited directive. An override can replace an inherited 
access specifier, add a missing specifier, or increase a property’s visibility, but it 
cannot remove an access specifier or decrease a property’s visibility. An override can 
include an implements directive, which adds to the list of implemented interfaces 
without removing inherited ones.

The following declarations illustrate the use of property overrides.

type
TAncestor = class
ƒ

protected
property Size: Integer read FSize;
property Text: string read GetText write SetText;
property Color: TColor read FColor write SetColor stored False;
ƒ

end;
type

TDerived = class(TAncestor)
ƒ

protected
property Size write SetSize;

published
property Text;
property Color stored True default clBlue;
ƒ

end;

The override of Size adds a write specifier to allow the property to be modified. The 
overrides of Text and Color change the visibility of the properties from protected to 
published. The property override of Color also specifies that the property should be 
filed if its value isn’t clBlue.

A redeclaration of a property that includes a type identifier hides the inherited 
property rather than overriding it. This means that a new property is created with the 
same name as the inherited one. Any property declaration that specifies a type must 
be a complete declaration, and must therefore include at least one access specifier.

Whether a property is hidden or overridden in a derived class, property look-up is 
always static. That is, the declared (compile-time) type of the variable used to identify 
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an object determines the interpretation of its property identifiers. Hence, after the 
following code executes, reading or assigning a value to MyObject.Value invokes 
Method1 or Method2, even though MyObject holds an instance of TDescendant. But you 
can cast MyObject to TDescendant to access the descendant class’s properties and their 
access specifiers.

type
TAncestor = class

ƒ
property Value: Integer read Method1 write Method2;

end;

TDescendant = class(TAncestor)
ƒ

property Value: Integer read Method3 write Method4;
end;

var MyObject: TAncestor;
ƒ

MyObject := TDescendant.Create;

Class references
Sometimes operations are performed on a class itself, rather than on instances of a 
class (that is, objects). This happens, for example, when you call a constructor method 
using a class reference. You can always refer to a specific class using its name, but at 
times it is necessary to declare variables or parameters that take classes as values, and 
in these situations you need class-reference types.

Class-reference types

A class-reference type, sometimes called a metaclass, is denoted by a construction of 
the form

class of type

where type is any class type. The identifier type itself denotes a value whose type is 
class of type. If type1 is an ancestor of type2, then class of type2 is assignment-
compatible with class of type1. Thus

type TClass = class of TObject;
var AnyObj: TClass;

declares a variable called AnyObj that can hold a reference to any class. (The 
definition of a class-reference type cannot occur directly in a variable declaration or 
parameter list.) You can assign the value nil to a variable of any class-reference type.

To see how class-reference types are used, look at the declaration of the constructor 
for TCollection (in the Classes unit):

type TCollectionItemClass = class of TCollectionItem;
ƒ

constructor Create(ItemClass: TCollectionItemClass);
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This declaration says that to create a TCollection instance object, you must pass to the 
constructor the name of a class descending from TCollectionItem.

Class-reference types are useful when you want to invoke a class method or virtual 
constructor on a class or object whose actual type is unknown at compile time.

Constructors and class references
A constructor can be called using a variable of a class-reference type. This allows 
construction of objects whose type isn’t known at compile time. For example,

type TControlClass = class of TControl;

function CreateControl(ControlClass: TControlClass;
const ControlName: string; X, Y, W, H: Integer): TControl;

begin
Result := ControlClass.Create(MainForm);
with Result do
begin

Parent := MainForm;
Name := ControlName;
SetBounds(X, Y, W, H);
Visible := True;

end;
end;

The CreateControl function requires a class-reference parameter to tell it what kind of 
control to create. It uses this parameter to call the class’s constructor. Because class-
type identifiers denote class-reference values, a call to CreateControl can specify the 
identifier of the class to create an instance of. For example,

CreateControl(TEdit, 'Edit1', 10, 10, 100, 20);

Constructors called using class references are usually virtual. The constructor 
implementation activated by the call depends on the runtime type of the class 
reference.

Class operators

Every class inherits from TObject methods called ClassType and ClassParent that 
return, respectively, a reference to the class of an object and of an object’s immediate 
ancestor. Both methods return a value of type TClass (where TClass = class of 
TObject), which can be cast to a more specific type. Every class also inherits a method 
called InheritsFrom that tests whether the object where it is called descends from a 
specified class. These methods are used by the is and as operators, and it is seldom 
necessary to call them directly.

The is operator
The is operator, which performs dynamic type checking, is used to verify the actual 
runtime class of an object. The expression

object is class
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returns True if object is an instance of the class denoted by class or one of its 
descendants, and False otherwise. (If object is nil, the result is False.) If the declared 
type of object is unrelated to class—that is, if the types are distinct and one is not an 
ancestor of the other—a compilation error results. For example,

if ActiveControl is TEdit then TEdit(ActiveControl).SelectAll;

This statement casts a variable to TEdit after first verifying that the object it references 
is an instance of TEdit or one of its descendants.

The as operator
The as operator performs checked typecasts. The expression

object as class

returns a reference to the same object as object, but with the type given by class. At 
runtime, object must be an instance of the class denoted by class or one of its 
descendants, or be nil; otherwise an exception is raised. If the declared type of object 
is unrelated to class—that is, if the types are distinct and one is not an ancestor of the 
other—a compilation error results. For example,

with Sender as TButton do
begin
  Caption := '&Ok';
  OnClick := OkClick;
end;

The rules of operator precedence often require as typecasts to be enclosed in 
parentheses. For example,

(Sender as TButton).Caption := '&Ok';

Class methods

A class method is a method (other than a constructor) that operates on classes instead 
of objects. The definition of a class method must begin with the reserved word class. 
For example,

type
TFigure = class
public

class function Supports(Operation: string): Boolean; virtual;
class procedure GetInfo(var Info: TFigureInfo); virtual;
ƒ

end;

The defining declaration of a class method must also begin with class. For example,

class procedure TFigure.GetInfo(var Info: TFigureInfo);
begin

ƒ
end;

In the defining declaration of a class method, the identifier Self represents the class 
where the method is called (which could be a descendant of the class in which it is 
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defined). If the method is called in the class C, then Self is of the type class of C. Thus 
you cannot use Self to access fields, properties, and normal (object) methods, but you 
can use it to call constructors and other class methods.

A class method can be called through a class reference or an object reference. When it 
is called through an object reference, the class of the object becomes the value of Self.

Exceptions
An exception is raised when an error or other event interrupts normal execution of a 
program. The exception transfers control to an exception handler, which allows you to 
separate normal program logic from error-handling. Because exceptions are objects, 
they can be grouped into hierarchies using inheritance, and new exceptions can be 
introduced without affecting existing code. An exception can carry information, such 
as an error message, from the point where it is raised to the point where it is handled.

When an application uses the SysUtils unit, all runtime errors are automatically 
converted into exceptions. Errors that would otherwise terminate an application—
such as insufficient memory, division by zero, and general protection faults—can be 
caught and handled.

When to use exceptions

Exceptions provide an elegant way to trap runtime errors without halting the 
program and without awkward conditional statements. The complexity of Object 
Pascal’s exception-handling mechanism, however, makes it inefficient, and it should 
therefore be used judiciously. While it is possible to raise exceptions for almost any 
reason, and to protect almost any block of code by wrapping it in a try...except or 
try...finally statement, in practice these tools are best reserved for special situations. 

Exception handling is appropriate for errors whose chances of occurring are low or 
difficult to assess, but whose consequences are likely to be catastrophic (such as 
crashing the application); for error conditions that are complicated or difficult to test 
for in if...then statements; and when you need to respond to exceptions raised by the 
operating system or by routines whose source code you don’t control. Exceptions are 
commonly used for hardware, memory, I/O, and operating-system errors.

Conditional statements are often the best way to test for errors. For example, suppose 
you want to make sure that a file exists before trying to open it. You could do it this 
way:

try
AssignFile(F, FileName);
Reset(F); // raises an EInOutError exception if file is not found

except
on Exception do ...

end;

But you could also avoid the overhead of exception handling by using

if FileExists(FileName) then // returns False if file is not found; raises no exception
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begin
AssignFile(F, FileName);
Reset(F);

end;

Assertions provide another way of testing a Boolean condition anywhere in your 
source code. When an Assert statement fails, the program either halts or (if it uses the 
SysUtils unit) raises an EAssertionFailed exception. Assertions should be used only to 
test for conditions that you do not expect to occur. For more information, see the 
online Help for the standard procedure Assert.

Declaring exception types

Exception types are declared just like other classes. In fact, it is possible to use an 
instance of any class as an exception, but it is recommended that exceptions be 
derived from the Exception class defined in SysUtils.

You can group exceptions into families using inheritance. For example, the following 
declarations in SysUtils define a family of exception types for math errors.

type
  EMathError = class(Exception);
  EInvalidOp = class(EMathError);
  EZeroDivide = class(EMathError);
  EOverflow = class(EMathError);
  EUnderflow = class(EMathError);

Given these declarations, you can define a single EMathError exception handler that 
also handles EInvalidOp, EZeroDivide, EOverflow, and EUnderflow.

Exception classes sometimes define fields, methods, or properties that convey 
additional information about the error. For example,

type EInOutError = class(Exception)
ErrorCode: Integer;

end;

Raising and handling exceptions

To create an exception object, call the exception class’s constructor within a raise 
statement. For example,

raise EMathError.Create;

In general, the form of a raise statement is

raise object at address

where object and at address are both optional. If object is omitted, the statement re-
raises the current exception; see “Re-raising exceptions” on page 7-30. When an 
address is specified, it is usually a pointer to a procedure or function; use this option 
to raise the exception from an earlier point in the stack than the one where the error 
actually occurred.
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When an exception is raised—that is, referenced in a raise statement—it is governed 
by special exception-handling logic. A raise statement never returns control in the 
normal way. Instead, it transfers control to the innermost exception handler that can 
handle exceptions of the given class. (The innermost handler is the one whose 
try...except block was most recently entered but has not yet exited.)

For example, the function below converts a string to an integer, raising an 
ERangeError exception if the resulting value is outside a specified range.

function StrToIntRange(const S: string; Min, Max: Longint): Longint;
begin

Result := StrToInt(S); // StrToInt is declared in SysUtils
if (Result < Min) or (Result > Max) then

raise ERangeError.CreateFmt(
'%d is not within the valid range of %d..%d',
[Result, Min, Max]);

end;

Notice the CreateFmt method called in the raise statement. Exception and its 
descendants have special constructors that provide alternative ways to create 
exception messages and context IDs. See the online Help for details.

A raised exception is destroyed automatically after it is handled. Never attempt to 
destroy a raised exception manually.

Note Raising an exception in the initialization section of a unit may not produce the 
intended result. Normal exception support comes from the SysUtils unit, which must 
be initialized before such support is available. If an exception occurs during 
initialization, all initialized units—including SysUtils—are finalized and the 
exception is re-raised. Then the exception is caught and handled, usually by 
interrupting the program.

Try...except statements
Exceptions are handled within try...except statements. For example,

try
X := Y/Z;

except
on EZeroDivide do HandleZeroDivide;

end;

This statement attempts to divide Y by Z, but calls a routine named HandleZeroDivide 
if an EZeroDivide exception is raised.

The syntax of a try...except statement is

try statements except exceptionBlock end

where statements is a sequence of statements (delimited by semicolons) and 
exceptionBlock is either

• another sequence of statements or
• a sequence of exception handlers, optionally followed by

else statements
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An exception handler has the form

on identifier: type do statement

where identifier: is optional (if included, identifier can be any valid identifier), type is a 
type used to represent exceptions, and statement is any statement.

A try...except statement executes the statements in the initial statements list. If no 
exceptions are raised, the exception block (exceptionBlock) is ignored and control 
passes to the next part of the program.

If an exception is raised during execution of the initial statements list, either by a raise 
statement in the statements list or by a procedure or function called from the 
statements list, an attempt is made to “handle” the exception:

• If any of the handlers in the exception block matches the exception, control passes 
to the first such handler. An exception handler “matches” an exception just in case 
the type in the handler is the class of the exception or an ancestor of that class.

• If no such handler is found, control passes to the statement in the else clause, if 
there is one.

• If the exception block is just a sequence of statements without any exception 
handlers, control passes to the first statement in the list.

If none of the conditions above is satisfied, the search continues in the exception 
block of the next-most-recently entered try...except statement that has not yet exited. 
If no appropriate handler, else clause, or statement list is found there, the search 
propagates to the next-most-recently entered try...except statement, and so forth. If 
the outermost try...except statement is reached and the exception is still not handled, 
the program terminates.

When an exception is handled, the stack is traced back to the procedure or function 
containing the try...except statement where the handling occurs, and control is 
transferred to the executed exception handler, else clause, or statement list. This 
process discards all procedure and function calls that occurred after entering the 
try...except statement where the exception is handled. The exception object is then 
automatically destroyed through a call to its Destroy destructor and control is passed 
to the statement following the try...except statement. (If a call to the Exit, Break, or 
Continue standard procedure causes control to leave the exception handler, the 
exception object is still automatically destroyed.)

In the example below, the first exception handler handles division-by-zero 
exceptions, the second one handles overflow exceptions, and the final one handles all 
other math exceptions. EMathError appears last in the exception block because it is 
the ancestor of the other two exception classes; if it appeared first, the other two 
handlers would never be invoked.

try
ƒ

except
on EZeroDivide do HandleZeroDivide;
on EOverflow do HandleOverflow;
on EMathError do HandleMathError;

end;
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An exception handler can specify an identifier before the name of the exception class. 
This declares the identifier to represent the exception object during execution of the 
statement that follows on...do. The scope of the identifier is limited to that statement. 
For example,

try
ƒ

except
on E: Exception do ErrorDialog(E.Message, E.HelpContext);

end;

If the exception block specifies an else clause, the else clause handles any exceptions 
that aren’t handled by the block’s exception handlers. For example,

try
ƒ

except
on EZeroDivide do HandleZeroDivide;
on EOverflow do HandleOverflow;
on EMathError do HandleMathError;

else
HandleAllOthers;

end;

Here, the else clause handles any exception that isn’t an EMathError.

An exception block that contains no exception handlers, but instead consists only of a 
list of statements, handles all exceptions. For example,

try
ƒ

except
HandleException;

end;

Here, the HandleException routine handles any exception that occurs as a result of 
executing the statements between try and except.

Re-raising exceptions
When the reserved word raise occurs in an exception block without an object 
reference following it, it raises whatever exception is handled by the block. This 
allows an exception handler to respond to an error in a limited way and then re-raise 
the exception. Re-raising is useful when a procedure or function has to clean up after 
an exception occurs but cannot fully handle the exception.

For example, the GetFileList function allocates a TStringList object and fills it with file 
names matching a specified search path:

function GetFileList(const Path: string): TStringList;
var

I: Integer;
SearchRec: TSearchRec;

begin
Result := TStringList.Create;
try

I := FindFirst(Path, 0, SearchRec);
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while I = 0 do
begin

Result.Add(SearchRec.Name);
I := FindNext(SearchRec);

end;
except

Result.Free;
raise;

end;
end;

GetFileList creates a TStringList object, then uses the FindFirst and FindNext functions 
(defined in SysUtils) to initialize it. If the initialization fails—for example because the 
search path is invalid, or because there is not enough memory to fill in the string 
list—GetFileList needs to dispose of the new string list, since the caller does not yet 
know of its existence. For this reason, initialization of the string list is performed in a 
try...except statement. If an exception occurs, the statement’s exception block 
disposes of the string list, then re-raises the exception.

Nested exceptions
Code executed in an exception handler can itself raise and handle exceptions. As long 
as these exceptions are also handled within the exception handler, they do not affect 
the original exception. However, once an exception raised in an exception handler 
propagates beyond that handler, the original exception is lost. This is illustrated by 
the Tan function below.

type
ETrigError = class(EMathError);

function Tan(X: Extended): Extended;
begin

try
Result := Sin(X) / Cos(X);

except
on EMathError do

raise ETrigError.Create('Invalid argument to Tan');
end;

end;

If an EMathError exception occurs during execution of Tan, the exception handler 
raises an ETrigError. Since Tan does not provide a handler for ETrigError, the 
exception propagates beyond the original exception handler, causing the EMathError 
exception to be destroyed. To the caller, it appears as if the Tan function has raised an 
ETrigError exception.

Try...finally statements
Sometimes you want to ensure that specific parts of an operation are completed, 
whether or not the operation is interrupted by an exception. For example, when a 
routine acquires control of a resource, it is often important that the resource be 
released, regardless of whether the routine terminates normally. In these situations, 
you can use a try...finally statement.
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The following example shows how code that opens and processes a file can ensure 
that the file is ultimately closed, even if an error occurs during execution.

Reset(F);
try
ƒ // process file F

finally
CloseFile(F);

end;

The syntax of a try...finally statement is

try statementList1 finally statementList2 end

where each statementList is a sequence of statements delimited by semicolons. The 
try...finally statement executes the statements in statementList1 (the try clause). If 
statementList1 finishes without raising exceptions, statementList2 (the finally clause) is 
executed. If an exception is raised during execution of statementList1, control is 
transferred to statementList2; once statementList2 finishes executing, the exception is 
re-raised. If a call to the Exit, Break, or Continue procedure causes control to leave 
statementList1, statementList2 is automatically executed. Thus the finally clause is 
always executed, regardless of how the try clause terminates.

If an exception is raised but not handled in the finally clause, that exception is 
propagated out of the try...finally statement, and any exception already raised in the 
try clause is lost. The finally clause should therefore handle all locally raised 
exceptions, so as not to disturb propagation of other exceptions.

Standard exception classes and routines

The SysUtils unit declares several standard routines for handling exceptions, 
including ExceptObject, ExceptAddr, and ShowException. SysUtils and other units also 
include dozens of exception classes, all of which (aside from OutlineError) derive 
from Exception.

The Exception class has properties called Message and HelpContext that can be used to 
pass an error description and a context ID for context-sensitive online 
documentation. It also defines various constructor methods that allow you to specify 
the description and context ID in different ways. See the online Help for details.
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Chapter8Standard routines and I/O

This chapter discusses text and file I/O and summarizes standard library routines. 
Many of the procedures and functions listed here are defined in the System unit, 
which is implicitly compiled with every application. Others are built into the 
compiler but are treated as if they were in the System unit.

Some standard routines are in units such as SysUtils, which must be listed in a uses 
clause to make them available in programs. You cannot, however, list System in a 
uses clause, nor should you modify the System unit or try to rebuild it explicitly.

For more information about the routines listed here, see the online Help.

File input and output
The table below lists input and output routines.

Table 8.1 Input and output procedures and functions

Procedure or 
function Description

Append Opens an existing text file for appending.

AssignFile Assigns the name of an external file to a file variable.

BlockRead Reads one or more records from an untyped file.

BlockWrite Writes one or more records into an untyped file.

ChDir Changes the current directory.

CloseFile Closes an open file.

Eof Returns the end-of-file status of a file.

Eoln Returns the end-of-line status of a text file.

Erase Erases an external file.

FilePos Returns the current file position of a typed or untyped file.

FileSize Returns the current size of a file; not used for text files.
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A file variable is any variable whose type is a file type. There are three classes of file: 
typed, text, and untyped. The syntax for declaring file types is given in “File types” on 
page 5-25.

Before a file variable can be used, it must be associated with an external file through a 
call to the AssignFile procedure. An external file is typically a named disk file, but it 
can also be a device, such as the keyboard or the display. The external file stores the 
information written to the file or supplies the information read from the file.

Once the association with an external file is established, the file variable must be 
“opened” to prepare it for input or output. An existing file can be opened via the 
Reset procedure, and a new file can be created and opened via the Rewrite procedure. 
Text files opened with Reset are read-only and text files opened with Rewrite and 
Append are write-only. Typed files and untyped files always allow both reading and 
writing regardless of whether they were opened with Reset or Rewrite.

Every file is a linear sequence of components, each of which has the component type 
(or record type) of the file. The components are numbered starting with zero.

Files are normally accessed sequentially. That is, when a component is read using the 
standard procedure Read or written using the standard procedure Write, the current 
file position moves to the next numerically ordered file component. Typed files and 
untyped files can also be accessed randomly through the standard procedure Seek, 
which moves the current file position to a specified component. The standard 
functions FilePos and FileSize can be used to determine the current file position and 
the current file size.

Flush Flushes the buffer of an output text file.

GetDir Returns the current directory of a specified drive.

IOResult Returns an integer value that is the status of the last I/O function performed.

MkDir Creates a subdirectory.

Read Reads one or more values from a file into one or more variables.

Readln Does what Read does and then skips to beginning of next line in the text file.

Rename Renames an external file.

Reset Opens an existing file.

Rewrite Creates and opens a new file.

RmDir Removes an empty subdirectory.

Seek Moves the current position of a typed or untyped file to a specified component. 
Not used with text files.

SeekEof Returns the end-of-file status of a text file.

SeekEoln Returns the end-of-line status of a text file.

SetTextBuf Assigns an I/O buffer to a text file.

Truncate Truncates a typed or untyped file at the current file position.

Write Writes one or more values to a file.

Writeln Does the same as Write, and then writes an end-of-line marker to the text file.

Table 8.1 Input and output procedures and functions (continued)

Procedure or 
function Description
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When a program completes processing a file, the file must be closed using the 
standard procedure CloseFile. After a file is closed, its associated external file is 
updated. The file variable can then be associated with another external file.

By default, all calls to standard I/O procedures and functions are automatically 
checked for errors, and if an error occurs an exception is raised (or the program is 
terminated if exception handling is not enabled). This automatic checking can be 
turned on and off using the {$I+} and {$I–} compiler directives. When I/O checking is 
off—that is, when a procedure or function call is compiled in the {$I–} state—an I/O 
error doesn’t cause an exception to be raised; to check the result of an I/O operation, 
you must call the standard function IOResult instead.

You must call the IOResult function to clear an error, even if you aren’t interested in 
the error. If you don’t clear an error and {$I+} is the current state, the next I/O 
function call will fail with the lingering IOResult error.

Text files

This section summarizes I/O using file variables of the standard type Text.

When a text file is opened, the external file is interpreted in a special way: It is 
considered to represent a sequence of characters formatted into lines, where each line 
is terminated by an end-of-line marker (a carriage-return character, possibly 
followed by a linefeed character). The type Text is distinct from the type file of Char.

For text files, there are special forms of Read and Write that let you read and write 
values that are not of type Char. Such values are automatically translated to and from 
their character representation. For example, Read(F, I), where I is a type Integer 
variable, reads a sequence of digits, interprets that sequence as a decimal integer, and 
stores it in I.

There are two standard text file variables, Input and Output. The standard file 
variable Input is a read-only file associated with the operating system’s standard 
input (typically, the keyboard). The standard file variable Output is a write-only file 
associated with the operating system’s standard output (typically, the display). 
Before an application begins executing, Input and Output are automatically opened, 
as if the following statements were executed:

AssignFile(Input, '');
Reset(Input);
AssignFile(Output, '');
Rewrite(Output);

Note Text-oriented I/O is available only in console applications—that is, applications 
compiled with the “Generate console application” option checked on the Linker page 
of the Project Options dialog box or with the -cc command-line compiler option. In a 
GUI (non-console) application, any attempt to read or write using Input or Output 
will produce an I/O error.

Some of the standard I/O routines that work on text files don’t need to have a file 
variable explicitly given as a parameter. If the file parameter is omitted, Input or 
Output is assumed by default, depending on whether the procedure or function is 
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input- or output-oriented. For example, Read(X) corresponds to Read(Input, X) and 
Write(X) corresponds to Write(Output, X).

If you do specify a file when calling one of the input or output routines that work on 
text files, the file must be associated with an external file using AssignFile, and 
opened using Reset, Rewrite, or Append. An exception is raised if you pass a file that 
was opened with Reset to an output-oriented procedure or function. An exception is 
also raised if you pass a file that was opened with Rewrite or Append to an input-
oriented procedure or function.

Untyped files

Untyped files are low-level I/O channels used primarily for direct access to disk files 
regardless of type and structuring. An untyped file is declared with the word file 
and nothing more. For example,

var DataFile: file;

For untyped files, the Reset and Rewrite procedures allow an extra parameter to 
specify the record size used in data transfers. For historical reasons, the default 
record size is 128 bytes. A record size of 1 is the only value that correctly reflects the 
exact size of any file. (No partial records are possible when the record size is 1.)

Except for Read and Write, all typed-file standard procedures and functions are also 
allowed on untyped files. Instead of Read and Write, two procedures called BlockRead 
and BlockWrite are used for high-speed data transfers.

Text file device drivers
You can define your own text file device drivers for your programs. A text file device 
driver is a set of four functions that completely implement an interface between 
Object Pascal’s file system and some device.

The four functions that define each device driver are Open, InOut, Flush, and Close. 
The function header of each function is

function DeviceFunc(var F: TTextRec): Integer;

where DeviceFunc is the name of the function (that is, Open, InOut, Flush, or Close). For 
information about the TTextRec type, see the online Help. The return value of a 
device-interface function becomes the value returned by IOResult. If the return value 
is zero, the operation was successful.

To associate the device-interface functions with a specific file, you must write a 
customized Assign procedure. The Assign procedure must assign the addresses of the 
four device-interface functions to the four function pointers in the text file variable. In 
addition, it should store the fmClosed “magic” constant in the Mode field, store the 
size of the text file buffer in BufSize, store a pointer to the text file buffer in BufPtr, and 
clear the Name string.

Assuming, for example, that the four device-interface functions are called DevOpen, 
DevInOut, DevFlush, and DevClose, the Assign procedure might look like this:
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procedure AssignDev(var F: Text);
begin

with TTextRec(F) do
begin

Mode := fmClosed;
BufSize := SizeOf(Buffer);
BufPtr := @Buffer;
OpenFunc := @DevOpen;
InOutFunc := @DevInOut;
FlushFunc := @DevFlush;
CloseFunc := @DevClose;
Name[0] := #0;

end;
end;

The device-interface functions can use the UserData field in the file record to store 
private information. This field isn’t modified by the product file system at any time.

Device functions

The functions that make up a text file device driver are described below.

The Open function
The Open function is called by the Reset, Rewrite, and Append standard procedures to 
open a text file associated with a device. On entry, the Mode field contains fmInput, 
fmOutput, or fmInOut to indicate whether the Open function was called from Reset, 
Rewrite, or Append.

The Open function prepares the file for input or output, according to the Mode value. 
If Mode specified fmInOut (indicating that Open was called from Append), it must be 
changed to fmOutput before Open returns.

Open is always called before any of the other device-interface functions. For that 
reason, AssignDev only initializes the OpenFunc field, leaving initialization of the 
remaining vectors up to Open. Based on Mode, Open can then install pointers to either 
input- or output-oriented functions. This saves the InOut, Flush functions and the 
CloseFile procedure from determining the current mode.

The InOut function
The InOut function is called by the Read, Readln, Write, Writeln, Eof, Eoln, SeekEof, 
SeekEoln, and CloseFile standard routines whenever input or output from the device is 
required.

When Mode is fmInput, the InOut function reads up to BufSize characters into BufPtr^, 
and returns the number of characters read in BufEnd. In addition, it stores zero in 
BufPos. If the InOut function returns zero in BufEnd as a result of an input request, Eof 
becomes True for the file.

When Mode is fmOutput, the InOut function writes BufPos characters from BufPtr^, 
and returns zero in BufPos.



8-6 O b j e c t  P a s c a l  L a n g u a g e  G u i d e

H a n d l i n g  n u l l - t e r m i n a t e d  s t r i n g s

The Flush function
The Flush function is called at the end of each Read, Readln, Write, and Writeln. It can 
optionally flush the text file buffer.

If Mode is fmInput, the Flush function can store zero in BufPos and BufEnd to flush the 
remaining (unread) characters in the buffer. This feature is seldom used.

If Mode is fmOutput, the Flush function can write the contents of the buffer exactly like 
the InOut function, which ensures that text written to the device appears on the 
device immediately. If Flush does nothing, the text doesn’t appear on the device until 
the buffer becomes full or the file is closed.

The Close function
The Close function is called by the CloseFile standard procedure to close a text file 
associated with a device. (The Reset, Rewrite, and Append procedures also call Close if 
the file they are opening is already open.) If Mode is fmOutput, then before calling 
Close, the file system calls the InOut function to ensure that all characters have been 
written to the device.

Handling null-terminated strings
Object Pascal’s extended syntax allows the Read, Readln, Str, and Val standard 
procedures to be applied to zero-based character arrays, and allows the Write, 
Writeln, Val, AssignFile, and Rename standard procedures to be applied to both zero-
based character arrays and character pointers. In addition, the following functions 
are provided for handling null-terminated strings. For more information about null-
terminated strings, see “Working with null-terminated strings” on page 5-13.

Table 8.2 Null-terminated string functions

Function Description

StrAlloc Allocates a character buffer of a given size on the heap.

StrBufSize Returns the size of a character buffer allocated using StrAlloc or StrNew.

StrCat Concatenates two strings.

StrComp Compares two strings.

StrCopy Copies a string.

StrDispose Disposes a character buffer allocated using StrAlloc or StrNew.

StrECopy Copies a string and returns a pointer to the end of the string.

StrEnd Returns a pointer to the end of a string.

StrFmt Formats one or more values into a string.

StrIComp Compares two strings without case sensitivity.

StrLCat Concatenates two strings with a given maximum length of the resulting string.

StrLComp Compares two strings for a given maximum length.

StrLCopy Copies a string up to a given maximum length.

StrLen Returns the length of a string.

StrLFmt Formats one or more values into a string with a given maximum length.
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Standard string-handling functions have multibyte-enabled counterparts that also 
implement locale-specific ordering for characters. Names of multibyte functions start 
with Ansi-. For example, the multibyte version of StrPos is AnsiStrPos. Multibyte 
character support is operating-system dependent and based on the current locale.

Wide-character strings

The System unit provides three functions, WideCharToString, WideCharLenToString, 
and StringToWideChar, that can be used to convert null-terminated wide character 
strings to single- or double-byte long strings.

For more information about wide-character strings, see “About extended character 
sets” on page 5-13.

Other standard routines
The table below lists frequently used procedures and functions found in Borland 
product libraries. This is not an exhaustive inventory of standard routines. For more 
information about these and other routines, see the online Help.

StrLIComp Compares two strings for a given maximum length without case sensitivity.

StrLower Converts a string to lowercase.

StrMove Moves a block of characters from one string to another.

StrNew Allocates a string on the heap.

StrPCopy Copies a Pascal string to a null-terminated string.

StrPLCopy Copies a Pascal string to a null-terminated string with a given maximum length.

StrPos Returns a pointer to the first occurrence of a given substring within a string.

StrRScan Returns a pointer to the last occurrence of a given character within a string.

StrScan Returns a pointer to the first occurrence of a given character within a string.

StrUpper Converts a string to uppercase.

Table 8.2 Null-terminated string functions (continued)

Function Description

Table 8.3 Other standard routines

Procedure or 
function Description

Abort Ends the process without reporting an error.

Addr Returns a pointer to a specified object.

AllocMem Allocates a memory block and initializes each byte to zero.

ArcTan Calculates the arctangent of the given number.

Assert Tests whether a boolean expression is True.

Assigned Tests for a nil (unassigned) pointer or procedural variable.

Beep Generates a standard beep using the computer speaker.
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Break Causes control to exit a for, while, or repeat statement.

ByteToCharIndex Returns the position of the character containing a specified byte in a string.

Chr Returns the character for a specified value. 

Close Terminates the association between a file variable and an external file.

CompareMem Performs a binary comparison of two memory images.

CompareStr Compares strings case sensitively.

CompareText Compares strings by ordinal value and is not case sensitive.

Continue Returns control to the next iteration of for, while, or repeat statements.

Copy Returns a substring of a string or a segment of a dynamic array.

Cos Calculates the cosine of an angle.

CurrToStr Converts a currency variable to a string.

Date Returns the current date.

DateTimeToStr Converts a variable of type TDateTime to a string.

DateToStr Converts a variable of type TDateTime to a string.

Dec Decrements an ordinal variable.

Dispose Releases memory allocated for a dynamic variable.

ExceptAddr Returns the address at which the current exception was raised.

Exit Exits from the current procedure.

Exp Calculates the exponential of X.

FillChar Fills contiguous bytes with a specified value.

Finalize Uninitializes a dynamically allocated variable.

FloatToStr Converts a floating point value to a string.

FloatToStrF Converts a floating point value to a string, using specified format.

FmtLoadStr Returns formatted output using a resourced format string.

FmtStr Assembles a formatted string from a series of arrays.

Format Assembles a string from a format string and a series of arrays.

FormatDateTime Formats a date-and-time value.

FormatFloat Formats a floating point value.

FreeMem Disposes of a dynamic variable.

GetMem Creates a dynamic variable and a pointer to the address of the block.

GetParentForm Returns the form or property page that contains a specified control.

Halt Initiates abnormal termination of a program.

Hi Returns the high-order byte of an expression as an unsigned value.

High Returns the highest value in the range of a type, array, or string.

Inc Increments an ordinal variable.

Initialize Initializes a dynamically allocated variable.

Insert Inserts a substring at a specified point in a string.

Int Returns the integer part of a real number.

IntToStr Converts an integer to a string.

Table 8.3 Other standard routines (continued)

Procedure or 
function Description
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Length Returns the length of a string or array.

Lo Returns the low-order byte of an expression as an unsigned value.

Low Returns the lowest value in the range of a type, array, or string.

LowerCase Converts an ASCII string to lowercase.

MaxIntValue Returns the largest signed value in an integer array.

MaxValue Returns the largest signed value in an array.

MinIntValue Returns the smallest signed value in an integer array.

MinValue Returns smallest signed value in an array.

New Creates a new dynamic variable and references it with a specified pointer.

Now Returns the current date and time.

Ord Returns the ordinal value of an ordinal-type expression.

Pos Returns the index of the first character of a specified substring in a string.

Pred Returns the predecessor of an ordinal value.

Ptr Converts a specified address to a pointer.

Random Generates random numbers within a specified range.

ReallocMem Reallocates a dynamic variable.

Round Returns the value of a real rounded to the nearest whole number.

SetLength Sets the dynamic length of a string variable or array.

SetString Sets the contents and length of the given string.

ShowException Displays an exception message with its address.

ShowMessage Displays a message box with an unformatted string and an OK button.

ShowMessageFmt Displays a message box with a formatted string and an OK button.

Sin Returns the sine of an angle in radians.

SizeOf Returns the number of bytes occupied by a variable or type.

Sqr Returns the square of a number.

Sqrt Returns the square root of a number.

Str Formats a string and returns it to a variable.

StrToCurr Converts a string to a currency value.

StrToDate Converts a string to a date format (TDateTime).

StrToDateTime Converts a string to a TDateTime.

StrToFloat Converts a string to a floating-point value.

StrToInt Converts a string to an integer.

StrToTime Converts a string to a time format (TDateTime).

StrUpper Returns a string in upper case.

Succ Returns the successor of an ordinal value.

Sum Returns the sum of the elements from an array.

Time Returns the current time.

TimeToStr Converts a variable of type TDateTime to a string.

Trunc Truncates a real number to an integer.

Table 8.3 Other standard routines (continued)

Procedure or 
function Description
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For information on format strings, see “Format strings” in the online Help.

UniqueString Ensures that a string has only one reference. (The string may be copied to 
produce a single reference.)

UpCase Converts a character to uppercase.

UpperCase Returns a string in uppercase.

VarArrayCreate Creates a variant array.

VarArrayDimCount Returns number of dimensions of a variant array.

VarArrayHighBound Returns high bound for a dimension in a variant array.

VarArrayLock Locks a variant array and returns a pointer to the data.

VarArrayLowBound Returns the low bound of a dimension in a variant array.

VarArrayOf Creates and fills a one-dimensional variant array.

VarArrayRedim Resizes a variant array.

VarArrayRef Returns a reference to the passed variant array.

VarArrayUnlock Unlocks a variant array.

VarAsType Converts a variant to specified type.

VarCast Converts a variant to a specified type, storing the result in a variable.

VarClear Clears a variant.

VarCopy Copies a variant.

VarToStr Converts variant to string.

VarType Returns type code of specified variant.

Table 8.3 Other standard routines (continued)

Procedure or 
function Description
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Chapter9Libraries and packages

A dynamically loadable library is a dynamic-link library (DLL) on Windows or a 
shared object library file on Linux. It is a collection of routines that can be called by 
applications and by other DLLs or shared objects. Like units, dynamically loadable 
libraries contain sharable code or resources. But this type of library is a separately 
compiled executable that is linked at runtime to the programs that use it.

To distinguish them from stand-alone executables, on Windows files containing 
compiled DLLs are named with the .DLL extension. On Linux, files containing 
shared object files are named with a .so extension. Object Pascal programs can call 
DLLs or shared objects written in other languages, and applications written in other 
languages can call DLLs or shared objects written in Object Pascal.

Calling dynamically loadable libraries
You can call operating system routines directly, but they are not linked to your 
application until runtime. This means that the library need not be present when you 
compile your program. It also means that there is no compile-time validation of 
attempts to import a routine.

Before you can call routines defined in a shared object, you must import them. This 
can be done in two ways: by declaring an external procedure or function, or by direct 
calls to the operating system. Whichever method you use, the routines are not linked 
to your application until runtime. 

Object Pascal does not support importing of variables from shared libraries.

Static loading
The simplest way to import a procedure or function is to declare it using the external 
directive. For example,

On Windows: procedure DoSomething; external 'MYLIB.DLL';

On Linux: procedure DoSomething; external 'mylib.so';
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If you include this declaration in a program, MYLIB.DLL (Windows) or mylib.so 
(Linux) is loaded once, when the program starts. Throughout execution of the 
program, the identifier DoSomething always refers to the same entry point in the same 
shared library.

Declarations of imported routines can be placed directly in the program or unit 
where they are called. To simplify maintenance, however, you can collect external 
declarations into a separate “import unit” that also contains any constants and types 
required for interfacing with the library. Other modules that use the import unit can 
call any routines declared in it.

For more information about external declarations, see “External declarations” on 
page 6-6.

Dynamic loading
You can access routines in a library through direct calls to OS library functions, 
including LoadLibrary, FreeLibrary, and GetProcAddress. In Windows, these functions 
are declared in Windows.pas; on Linux, they are implemented for compatibility in 
SysUtils.pas; the actual Linux OS routines are dlopen, dlclose, and dlsym (all declared 
in Kylix’s Libc unit; see the man pages for more information). In this case, use 
procedural-type variables to reference the imported routines. 

For example, on Windows or Linux:

uses Windows, ...; {On Linux, replace Windows with SysUtils }

type
TTimeRec = record
Second: Integer;
Minute: Integer;
Hour: Integer;

end;

TGetTime = procedure(var Time: TTimeRec);
THandle = Integer;

var
Time: TTimeRec;
Handle: THandle;
GetTime: TGetTime;
ƒ

begin
Handle := LoadLibrary('libraryname');
if Handle <> 0 then
begin
@GetTime := GetProcAddress(Handle, 'GetTime');
if @GetTime <> nil then
begin

GetTime(Time);
with Time do
WriteLn('The time is ', Hour, ':', Minute, ':', Second);

end;
FreeLibrary(Handle);

end;
end;
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When you import routines this way, the library is not loaded until the code 
containing the call to LoadLibrary executes. The library is later unloaded by the call to 
FreeLibrary. This allows you to conserve memory and to run your program even 
when some of the libraries it uses are not present.

This same example can also be written on Linux as follows:

uses Libc, ...;

type
TTimeRec = record
Second: Integer;
Minute: Integer;
Hour: Integer;

end;

TGetTime = procedure(var Time: TTimeRec);
THandle = Pointer;

var
Time: TTimeRec;
Handle: THandle;
GetTime: TGetTime;
ƒ

begin
Handle := dlopen('datetime.so', RTLD_LAZY);
if Handle <> 0 then
begin
@GetTime := dlsym(Handle, 'GetTime');
if @GetTime <> nil then
begin

GetTime(Time);
with Time do
WriteLn('The time is ', Hour, ':', Minute, ':', Second);

end;
dlclose(Handle);

end;
end;

In this case, when importing routines, the shared object is not loaded until the code 
containing the call to dlopen executes. The shared object is later unloaded by the call 
to dlclose. This also allows you to conserve memory and to run your program even 
when some of the shared objects it uses are not present.

Writing dynamically loadable libraries
The main source for a dynamically loadable library is identical to that of a program, 
except that it begins with the reserved word library (instead of program).

Only routines that a library explicitly exports are available for importing by other 
libraries or programs. The following example shows a library with two exported 
functions, Min and Max.
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library MinMax;

function Min(X, Y: Integer): Integer; stdcall;
begin

if X < Y then Min := X else Min := Y;
end;

function Max(X, Y: Integer): Integer; stdcall;
begin

if X > Y then Max := X else Max := Y;
end;

exports
Min,
Max;

begin
end.

If you want your library to be available to applications written in other languages, it’s 
safest to specify stdcall in the declarations of exported functions. Other languages 
may not support Object Pascal’s default register calling convention.

Libraries can be built from multiple units. In this case, the library source file is 
frequently reduced to a uses clause, an exports clause, and the initialization code. For 
example,

library Editors;

uses EdInit, EdInOut, EdFormat, EdPrint;

exports
InitEditors,
DoneEditors name Done,
InsertText name Insert,
DeleteSelection name Delete,
FormatSelection,
PrintSelection name Print,
ƒ

SetErrorHandler;

begin
InitLibrary;

end.

You can put exports clauses in the interface or implementation section of a unit. Any 
library that includes such a unit in its uses clause automatically exports the routines 
listed the unit’s exports clauses—without the need for an exports clause of its own.

The directive local, which marks routines as unavailable for export, is platform-
specific and has no effect in Windows programming.

On Linux, the local directive provides a slight performance optimization for routines 
that are compiled into a library but are not exported. This directive can be specified 
for stand-alone procedures and functions, but not for methods. A routine declared 
with local—for example,

function Contraband(I: Integer): Integer; local;

—does not refresh the EBX register and hence
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• cannot be exported from a library.
• cannot be declared in the interface section of a unit.
• cannot have its address taken or be assigned to a procedural-type variable.
• if it is a pure assembler routine, cannot be called from another unit unless the caller 

sets up EBX.

The exports clause

A routine is exported when it is listed in an exports clause, which has the form

exports entry1, ..., entryn;

where each entry consists of the name of a procedure, function, or variable (which 
must be declared prior to the exports clause), followed by a parameter list (only if 
exporting a routine that is overloaded), and an optional name specifier. You can 
qualify the procedure or function name with the name of a unit.

(Entries can also include the directive resident, which is maintained for backward 
compatibility and is ignored by the compiler.)

On Windows only, an index specifier consists of the directive index followed by a 
numeric constant between 1 and 2,147,483,647. (For more efficient programs, use low 
index values.) If an entry has no index specifier, the routine is automatically assigned 
a number in the export table. 

Note Use of index specifiers, which are supported for backward compatibility only, is 
discouraged and may cause problems for other development tools.

A name specifier consists of the directive name followed by a string constant. If an 
entry has no name specifier, the routine is exported under its original declared name, 
with the same spelling and case. Use a name clause when you want to export a 
routine under a different name. For example,

exports
DoSomethingABC name 'DoSomething';

When you export an overloaded function or procedure from a dynamically loadable 
library, you must specify its parameter list in the exports clause. For example,

exports
Divide(X, Y: Integer) name 'Divide_Ints',
Divide(X, Y: Real) name 'Divide_Reals';

On Windows, do not include index specifiers in entries for overloaded routines.

An exports clause can appear anywhere and any number of times in the declaration 
part of a program or library, or in the interface or implementation section of a unit. 
Programs seldom contain an exports clause.

Library initialization code

The statements in a library’s block constitute the library’s initialization code. These 
statements are executed once every time the library is loaded. They typically perform 
tasks like registering window classes and initializing variables. Library initialization 
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code can also install an entry point procedure using the DllProc variable. The DllProc 
variable is similar to an exit procedure, which is described in “Exit procedures” on 
page 12-4; the entry point procedure executes when the library is loaded or 
unloaded.

Library initialization code can signal an error by setting the ExitCode variable to a 
nonzero value. ExitCode is declared in the System unit and defaults to zero, indicating 
successful initialization. If a library’s initialization code sets ExitCode to another 
value, the library is unloaded and the calling application is notified of the failure. 
Similarly, if an unhandled exception occurs during execution of the initialization 
code, the calling application is notified of a failure to load the library.

Here is an example of a library with initialization code and an entry point procedure.

library Test;

var
SaveDllProc: Pointer;

procedure LibExit(Reason: Integer);
begin

if Reason = DLL_PROCESS_DETACH then
begin
ƒ // library exit code
end;
SaveDllProc(Reason); // call saved entry point procedure

end;

begin
ƒ // library initialization code
SaveDllProc := DllProc; // save exit procedure chain
DllProc := @LibExit; // install LibExit exit procedure

end.

DllProc is called when the library is first loaded into memory, when a thread starts or 
stops, or when the library is unloaded. The initialization parts of all units used by a 
library are executed before the library’s initialization code, and the finalization parts 
of those units are executed after the library’s entry point procedure.

Global variables in a library

Global variables declared in a shared library cannot be imported by an Object Pascal 
application.

A library can be used by several applications at once, but each application has a copy 
of the library in its own process space with its own set of global variables. For 
multiple libraries—or multiple instances of a library—to share memory, they must 
use memory-mapped files. Refer to the your system documentation for further 
information.
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Libraries and system variables

Several variables declared in the System unit are of special interest to those 
programming libraries. Use IsLibrary to determine whether code is executing in an 
application or in a library; IsLibrary is always False in an application and True in a 
library. During a library’s lifetime, HInstance contains its instance handle. CmdLine is 
always nil in a library.

The DLLProc variable allows a library to monitor calls that the operating system 
makes to the library entry point. This feature is normally used only by libraries that 
support multithreading. DLLProc is available on both Windows and Linux but its use 
differs on each. On Windows, DLLProc is used in multithreading applications; on 
Linux, it is used to determine when your library is being unloaded. You should use 
finalization sections, rather than exit procedures, for all exit behavior. (See “The 
finalization section” on page 3-5.) 

To monitor operating-system calls, create a callback procedure that takes a single 
integer parameter—for example,

procedure DLLHandler(Reason: Integer);

—and assign the address of the procedure to the DLLProc variable. When the 
procedure is called, it passes to it one of the following values.

In the body of the procedure, you can specify actions to take depending on which 
parameter is passed to the procedure.

Exceptions and runtime errors in libraries

When an exception is raised but not handled in a dynamically loadable library, it 
propagates out of the library to the caller. If the calling application or library is itself 
written in Object Pascal, the exception can be handled through a normal try...except 
statement. 

Note Under Linux this is only possible if the library and application have both been built 
with the same set of (base) runtime packages (which contains the EH code) or if both 
link to ShareExcept.

DLL_PROCESS_DETACH Indicates that the library is detaching from the 
address space of the calling process as a result of a 
clean exit or a call to FreeLibrary (dlclose on Linux).

DLL_PROCESS_ATTACH Indicates that the library is attaching to the address 
space of the calling process as the result of a call to 
LoadLibrary (dlopen on Linux).

DLL_THREAD_ATTACH Indicates that the current process is creating a new 
thread (Windows only).

DLL_THREAD_DETACH Indicates that a thread is exiting cleanly (Windows 
only).
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On Windows, If the calling application or library is written in another language, the 
exception can be handled as an operating-system exception with the exception code 
$0EEDFADE. The first entry in the ExceptionInformation array of the operating-system 
exception record contains the exception address, and the second entry contains a 
reference to the Object Pascal exception object. 

Generally, you should not let exceptions escape from your library. On Windows, 
Delphi exceptions map to the OS exception model; Linux does not have an exception 
model.

If a library does not use the SysUtils unit, exception support is disabled. In this case, 
when a runtime error occurs in the library, the calling application terminates. 
Because the library has no way of knowing whether it was called from an Object 
Pascal program, it cannot invoke the application’s exit procedures; the application is 
simply aborted and removed from memory.

Shared-memory manager (Windows only)

On Windows, if a DLL exports routines that pass long strings or dynamic arrays as 
parameters or function results (whether directly or nested in records or objects), then 
the DLL and its client applications (or DLLs) must all use the ShareMem unit. The 
same is true if one application or DLL allocates memory with New or GetMem which 
is deallocated by a call to Dispose or FreeMem in another module. ShareMem should 
always be the first unit listed in any program or library uses clause where it occurs.

ShareMem is the interface unit for the BORLANDMM.DLL memory manager, which 
allows modules to share dynamically allocated memory. BORLANDMM.DLL must 
be deployed with applications and DLLs that use ShareMem. When an application or 
DLL uses ShareMem, its memory manager is replaced by the memory manager in 
BORLANDMM.DLL.

Linux uses glibc’s malloc to manage shared memory.

Packages
A package is a specially compiled library used by applications, the IDE, or both. 
Packages allow you to rearrange when code resides without affecting the source 
code. This is sometimes referred to as application partitioning.

Runtime packages provide functionality when a user runs an application. Design-time 
packages are used to install components in the IDE and to create special property 
editors for custom components. A single package can function at both design time 
and runtime, and design-time packages frequently work by referencing runtime 
packages in their requires clauses.

To distinguish them from other libraries, packages are stored in files:

• On Windows, package files end with the .bpl (Borland package library) extension.

• On Linux, packages generally begin with the prefix bpl and have a .so extension.
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Ordinarily, packages are loaded statically when an applications starts. But you can 
use the LoadPackage and UnloadPackage routines (in the SysUtils unit) to load packages 
dynamically.

Note When an application utilizes packages, the name of each packaged unit still must 
appear in the uses clause of any source file that references it. For more information 
about packages, see the online Help.

Package declarations and source files

Each package is declared in a separate source file, which should be saved with the 
.dpk extension to avoid confusion with other files containing Object Pascal code. A 
package source file does not contain type, data, procedure, or function declarations. 
Instead, it contains

• A name for the package.

• A list of other packages required by the new package. These are packages to which 
the new package is linked.

• A list of unit files contained by, or bound into, the package when it is compiled. The 
package is essentially a wrapper for these source-code units, which provide the 
functionality of the compiled package.

A package declaration has the form

package packageName;
requiresClause;
containsClause;

end.

where packageName is any valid identifier. The requiresClause and containsClause are 
both optional. For example, the following code declares the DATAX package.

package DATAX;
requires 

baseclx,
visualclx;
contains Db, DBLocal, DBXpress, ... ;

end.

The requires clause lists other, external packages used by the package being 
declared. It consists of the directive requires, followed by a comma-delimited list of 
package names, followed by a semicolon. If a package does not reference other 
packages, it does not need a requires clause.

The contains clause identifies the unit files to be compiled and bound into the 
package. It consists of the directive contains, followed by a comma-delimited list of 
unit names, followed by a semicolon. Any unit name may be followed by the 
reserved word in and the name of a source file, with or without a directory path, in 
single quotation marks; directory paths can be absolute or relative. For example,

contains MyUnit in 'C:\MyProject\MyUnit.pas'; // Windows

contains MyUnit in '\home\developer\MyProject\MyUnit.pas'; // Linux
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Note Thread-local variables (declared with threadvar) in a packaged unit cannot be 
accessed from clients that use the package.

Naming packages
A compiled package involves several generated files. For example, the source file for 
the package called DATAX is DATAX.dpk, from which the compiler generates an 
executable and a binary image called 

• On Windows: DATAX.bpl and DATAX.dcp

• On Linux: bplDATAX.so and DATAX.dcp. 

DATAX is used to refer to the package in the requires clauses of other packages, or 
when using the package in an application. Package names must be unique within a 
project.

The requires clause
The requires clause lists other, external packages that are used by the current 
package. It functions like the uses clause in a unit file. An external package listed in 
the requires clause is automatically linked at compile time into any application that 
uses both the current package and one of the units contained in the external package.

If the unit files contained in a package make references to other packaged units, the 
other packages should be included in the first package’s requires clause. If the other 
packages are omitted from the requires clause, the compiler loads the referenced 
units from their .dcu (Windows) or .dpu (Linux) files.

Avoiding circular package references
Packages cannot contain circular references in their requires clauses. This means that

• A package cannot reference itself in its own requires clause.

• A chain of references must terminate without rereferencing any package in the 
chain. If package A requires package B, then package B cannot require package A; 
if package A requires package B and package B requires package C, then package 
C cannot require package A.

Duplicate package references
The compiler ignores duplicate references in a package’s requires clause. For 
programming clarity and readability, however, duplicate references should be 
removed.

The contains clause
The contains clause identifies the unit files to be bound into the package. Do not 
include file-name extensions in the contains clause.
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Avoiding redundant source code uses
A package cannot be listed in the contains clause of another package or the uses 
clause of a unit.

All units included directly in a package’s contains clause, or indirectly in the uses 
clauses of those units, are bound into the package at compile time. The units 
contained (directly or indirectly) in a package cannot be contained in any other 
packages referenced in requires clause of that package.

A unit cannot be contained (directly or indirectly) in more than one package used by 
the same application.

Compiling packages

Packages are ordinarily compiled from the IDE using .dpk files generated by the 
Package editor. You can also compile .dpk files directly from the command line. 
When you build a project that contains a package, the package is implicitly 
recompiled, if necessary.

Generated files
The following table lists the files produced by the successful compilation of a 
package.

Several compiler directives and command-line switches are available to support 
package compilation.

Table 9.1 Compiled package files

File extension Contents

dcp A binary image containing a package header and the concatenation of all 
dcu (Windows) or dpu (Linux) files in the package. A single dcp file is 
created for each package. The base name for the dcp is the base name of 
the dpk source file.

dcu (Windows)
dpu (Linux)

A binary image for a unit file contained in a package. One dcu or dpu file 
is created, when necessary, for each unit file.

.bpl on Windows
bpl<package>.so 
on Linux

The runtime package. This file is a shared library with special Borland-
specific features. The base name for the package is the base name of the 
dpk source file.
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Package-specific compiler directives
The following table lists package-specific compiler directives that can be inserted into 
source code. See the online Help for details.

Including {$DENYPACKAGEUNIT ON} in source code prevents the unit file from 
being packaged. Including {$G–} or {$IMPORTEDDATA OFF} may prevent a 
package from being used in the same application with other packages.

Other compiler directives may be included, if appropriate, in package source code.

Package-specific command-line compiler switches
The following package-specific switches are available for the command-line 
compiler. See the online Help for details.

Using the –$G– switch may prevent a package from being used in the same 
application with other packages.

Other command-line options may be used, if appropriate, when compiling packages.

Table 9.2 Package-specific compiler directives

Directive Purpose

{$IMPLICITBUILD OFF} Prevents a package from being implicitly recompiled later. 
Use in .dpk files when compiling packages that provide 
low-level functionality, that change infrequently between 
builds, or whose source code will not be distributed.

{$G–} or {$IMPORTEDDATA OFF} Disables creation of imported data references. This 
directive increases memory-access efficiency, but prevents 
the unit where it occurs from referencing variables in 
other packages.

{$WEAKPACKAGEUNIT ON} Packages unit “weakly”, as explained in the online Help.

{$DENYPACKAGEUNIT ON} Prevents unit from being placed in a package.

{$DESIGNONLY ON} Compiles the package for installation in the IDE. (Put in 
.dpk file.)

{$RUNONLY ON} Compiles the package as runtime only. (Put in .dpk file.)

Table 9.3 Package-specific command-line compiler switches

Switch Purpose

–$G– Disables creation of imported data references. Using this switch increases 
memory-access efficiency, but prevents packages compiled with it from 
referencing variables in other packages.

–LE path Specifies the directory where the compiled package file will be placed.

–LN path Specifies the directory where the package dcp file will be placed.

–LUpackageName 
[;packageName2;...]

Specifies additional runtime packages to use in an application. Used when 
compiling a project.

–Z Prevents a package from being implicitly recompiled later. Use when 
compiling packages that provide low-level functionality, that change 
infrequently between builds, or whose source code will not be distributed.
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Chapter10Object interfaces

An object interface—or simply interface—defines methods that can be implemented by 
a class. Interfaces are declared like classes, but cannot be directly instantiated and do 
not have their own method definitions. Rather, it is the responsibility of any class that 
supports an interface to provide implementations for the interface’s methods. A 
variable of an interface type can reference an object whose class implements that 
interface; however, only methods declared in the interface can be called using such a 
variable.

Interfaces offer some of the advantages of multiple inheritance without the semantic 
difficulties. They are also essential for using distributed object models. Custom 
objects built that support interfaces can interact with objects written in C++, Java, and 
other languages.

Interface types
Interfaces, like classes, can be declared only in the outermost scope of a program or 
unit, not in a procedure or function declaration. An interface type declaration has the 
form

type interfaceName = interface (ancestorInterface)
['{GUID}']
memberList

end;

where (ancestorInterface) and ['{GUID}'] are optional. In most respects, interface 
declarations resemble class declarations, but the following restrictions apply.

• The memberList can include only methods and properties. Fields are not allowed in 
interfaces.

• Since an interface has no fields, property read and write specifiers must be 
methods.
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• All members of an interface are public. Visibility specifiers and storage specifiers 
are not allowed. (But an array property can be declared as default.)

• Interfaces have no constructors or destructors. They cannot be instantiated, except 
through classes that implement their methods.

• Methods cannot be declared as virtual, dynamic, abstract, or override. Since 
interfaces do not implement their own methods, these designations have no 
meaning.

Here is an example of an interface declaration:

type
IMalloc = interface(IInterface)

['{00000002-0000-0000-C000-000000000046}']
function Alloc(Size: Integer): Pointer; stdcall;
function Realloc(P: Pointer; Size: Integer): Pointer; stdcall;
procedure Free(P: Pointer); stdcall;
function GetSize(P: Pointer): Integer; stdcall;
function DidAlloc(P: Pointer): Integer; stdcall;
procedure HeapMinimize; stdcall;

end;

In some interface declarations, the interface reserved word is replaced by 
dispinterface. This construction (along with the dispid, read only, and write only 
directives) is platform-specific and is not used in Linux programming.

IInterface and inheritance

An interface, like a class, inherits all of its ancestors’ methods. But interfaces, unlike 
classes, do not implement methods. What an interface inherits is the obligation to 
implement methods—an obligation that devolves onto any class supporting the 
interface.

The declaration of an interface can specify an ancestor interface. If no ancestor is 
specified, the interface is a direct descendant of IInterface, which is defined in the 
System unit and is the ultimate ancestor of all other interfaces. IInterface declares three 
methods: QueryInterface, _AddRef, and _Release.

Note IInterface is equivalent to IUnknown. You should generally use IInterface for platform 
independent applications and reserve the use of IUnknown for specific programs that 
include Windows dependencies.

QueryInterface provides the means to move freely among the different interfaces that 
an object supports. _AddRef and _Release provide lifetime memory management for 
interface references. The easiest way to implement these methods is to derive the 
implementing class from the System unit’s TInterfacedObject. It is also possible to 
dispense with any of these methods by implementing it as an empty function; COM 
objects (Windows only), however, must be managed through _AddRef and _Release.
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Interface identification

An interface declaration can specify a globally unique identifier (GUID), represented 
by a string literal enclosed in brackets immediately preceding the member list. The 
GUID part of the declaration must have the form

['{xxxxxxxx–xxxx–xxxx–xxxx–xxxxxxxxxxxx}']

where each x is a hexadecimal digit (0 through 9 or A through F). On Windows, the 
Type Library editor automatically generates GUIDs for new interfaces; you can also 
generate GUIDs by pressing Ctrl+Shift+G in the Code editor (on Linux, you must use 
Ctrl+Shift+G).

A GUID is a 16-byte binary value that uniquely identifies an interface. If an interface 
has a GUID, you can use interface querying to get references to its implementations. 
(See “Interface querying” on page 10-10.)

The TGUID and PGUID types, declared in the System unit, are used to manipulate 
GUIDs.

type
PGUID = ^TGUID;
TGUID = packed record

D1: Longword;
D2: Word;
D3: Word;
D4: array[0..7] of Byte;

end;

When you declare a typed constant of type TGUID, you can use a string literal to 
specify its value. For example,

const IID_IMalloc: TGUID = '{00000002-0000-0000-C000-000000000046}';

In procedure and function calls, either a GUID or an interface identifier can serve as a 
value or constant parameter of type TGUID. For example, given the declaration

function Supports(Unknown: IInterface; const IID: TGUID): Boolean;

Supports can be called in either of two ways:

if Supports(Allocator, IMalloc) then ...
if Supports(Allocator, IID_IMalloc) then ...

Calling conventions for interfaces

The default calling convention is register, but interfaces shared among modules 
(especially if they are written in different languages) should declare all methods with 
stdcall. Use safecall to implement CORBA interfaces. On Windows, you can use 
safecall to implement methods of dual interfaces (as described in “Dual interfaces 
(Windows only)” on page 10-13).

For more information about calling conventions, see “Calling conventions” on 
page 6-4.
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Interface properties

Properties declared in an interface are accessible only through expressions of the 
interface type; they cannot be accessed through class-type variables. Moreover, 
interface properties are visible only within programs where the interface is compiled. 
For example, on Windows, COM objects do not have properties.

In an interface, property read and write specifiers must be methods, since fields are 
not available.

Forward declarations

An interface declaration that ends with the reserved word interface and a semicolon, 
without specifying an ancestor, GUID, or member list, is a forward declaration. A 
forward declaration must be resolved by a defining declaration of the same interface 
within the same type declaration section. In other words, between a forward 
declaration and its defining declaration, nothing can occur except other type 
declarations.

Forward declarations allow mutually dependent interfaces. For example,

type
IControl = interface;
IWindow = interface

['{00000115-0000-0000-C000-000000000044}']
function GetControl(Index: Integer): IControl;
ƒ

end;
IControl = interface

['{00000115-0000-0000-C000-000000000049}']
function GetWindow: IWindow;
ƒ

end;

Mutually derived interfaces are not allowed. For example, it is not legal to derive 
IWindow from IControl and also derive IControl from IWindow.

Implementing interfaces
Once an interface has been declared, it must be implemented in a class before it can 
be used. The interfaces implemented by a class are specified in the class’s declaration, 
after the name of the class’s ancestor. Such declarations have the form

type className = class (ancestorClass, interface1, ..., interfacen)
memberList

end;

For example,

type
TMemoryManager = class(TInterfacedObject, IMalloc, IErrorInfo)

ƒ
end;
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declares a class called TMemoryManager that implements the IMalloc and IErrorInfo 
interfaces. When a class implements an interface, it must implement (or inherit an 
implementation of) each method declared in the interface.

Here is the declaration of TInterfacedObject in the System unit.

type
TInterfacedObject = class(TObject, IInterface)
protected
    FRefCount: Integer;
    function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;
    function _AddRef: Integer; stdcall;
    function _Release: Integer; stdcall;
  public
    procedure AfterConstruction; override;
    procedure BeforeDestruction; override;
    class function NewInstance: TObject; override;
    property RefCount: Integer read FRefCount;
  end;

TInterfacedObject implements the IInterface interface. Hence TInterfacedObject declares 
and implements each of IInterface’s three methods.

Classes that implement interfaces can also be used as base classes. (The first example 
above declares TMemoryManager as a direct descendent of TInterfacedObject.) Since 
every interface inherits from IInterface, a class that implements interfaces must 
implement the QueryInterface, _AddRef, and _Release methods. The System unit’s 
TInterfacedObject implements these methods and is thus a convenient base from 
which to derive other classes that implement interfaces.

When an interface is implemented, each of its methods is mapped onto a method in 
the implementing class that has the same result type, the same calling convention, the 
same number of parameters, and identically typed parameters in each position. By 
default, each interface method is mapped to a method of the same name in the 
implementing class.

Method resolution clauses

You can override the default name-based mappings by including method resolution 
clauses in a class declaration. When a class implements two or more interfaces that 
have identically named methods, use method resolution clauses to resolve the 
naming conflicts.

A method resolution clause has the form

procedure interface.interfaceMethod = implementingMethod;

or

function interface.interfaceMethod = implementingMethod;

where implementingMethod is a method declared in the class or one of its ancestors. 
The implementingMethod can be a method declared later in the class declaration, but 
cannot be a private method of an ancestor class declared in another module.
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For example, the class declaration

type
TMemoryManager = class(TInterfacedObject, IMalloc, IErrorInfo)

function IMalloc.Alloc = Allocate;
procedure IMalloc.Free = Deallocate;
ƒ

end;

maps IMalloc’s Alloc and Free methods onto TMemoryManager’s Allocate and Deallocate 
methods.

A method resolution clause cannot alter a mapping introduced by an ancestor class.

Changing inherited implementations

Descendant classes can change the way a specific interface method is implemented 
by overriding the implementing method. This requires that the implementing 
method be virtual or dynamic.

A class can also reimplement an entire interface that it inherits from an ancestor class. 
This involves relisting the interface in the descendant class’s declaration. For 
example,

type
IWindow = interface

['{00000115-0000-0000-C000-000000000146}']
procedure Draw;
ƒ

end;

TWindow = class(TInterfacedObject, IWindow) // TWindow implements IWindow
procedure Draw;
ƒ

end;

TFrameWindow = class(TWindow, IWindow) // TFrameWindow reimplements IWindow
procedure Draw;
ƒ

end;

Reimplementing an interface hides the inherited implementation of the same 
interface. Hence method resolution clauses in an ancestor class have no effect on the 
reimplemented interface.

Implementing interfaces by delegation

The implements directive allows you to delegate implementation of an interface to a 
property in the implementing class. For example,

property MyInterface: IMyInterface read FMyInterface implements IMyInterface;

declares a property called MyInterface that implements the interface IMyInterface.
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The implements directive must be the last specifier in the property declaration and 
can list more than one interface, separated by commas. The delegate property

• must be of a class or interface type.
• cannot be an array property or have an index specifier.
• must have a read specifier. If the property uses a read method, that method must 

use the default register calling convention and cannot be dynamic (though it can 
be virtual) or specify the message directive.

Note The class you use to implement the delegated interface should derive from 
TAggregatedObject.

Delegating to an interface-type property
If the delegate property is of an interface type, that interface, or an interface from 
which it derives, must occur in the ancestor list of the class where the property is 
declared. The delegate property must return an object whose class completely 
implements the interface specified by the implements directive, and which does so 
without method resolution clauses. For example,

type
IMyInterface = interface

procedure P1;
procedure P2;

end;

TMyClass = class(TObject, IMyInterface)
FMyInterface: IMyInterface;
property MyInterface: IMyInterface read FMyInterface implements IMyInterface;

end;

var
MyClass: TMyClass;
MyInterface: IMyInterface;

begin
MyClass := TMyClass.Create;
MyClass.FMyInterface := ... // some object whose class implements IMyInterface
MyInterface := MyClass;
MyInterface.P1;

end;

Delegating to a class-type property
If the delegate property is of a class type, that class and its ancestors are searched for 
methods implementing the specified interface before the enclosing class and its 
ancestors are searched. Thus it is possible to implement some methods in the class 
specified by the property, and others in the class where the property is declared. 
Method resolution clauses can be used in the usual way to resolve ambiguities or 
specify a particular method. An interface cannot be implemented by more than one 
class-type property. For example,

type
IMyInterface = interface

procedure P1;
procedure P2;
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end;
TMyImplClass = class

procedure P1;
procedure P2;

end;
TMyClass = class(TInterfacedObject, IMyInterface)

FMyImplClass: TMyImplClass;
property MyImplClass: TMyImplClass read FMyImplClass implements IMyInterface;
procedure IMyInterface.P1 = MyP1;
procedure MyP1;

end;
procedure TMyImplClass.P1;

ƒ
procedure TMyImplClass.P2;

ƒ
procedure TMyClass.MyP1;

ƒ
var

MyClass: TMyClass;
MyInterface: IMyInterface;

begin
MyClass := TMyClass.Create;
MyClass.FMyImplClass := TMyImplClass.Create;
MyInterface := MyClass;
MyInterface.P1; // calls TMyClass.MyP1;
MyInterface.P2; // calls TImplClass.P2;

end;

Interface references
If you declare a variable of an interface type, the variable can reference instances of 
any class that implements the interface. Such variables allow you to call interface 
methods without knowing at compile time where the interface is implemented. But 
they are subject to the following limitations.

• An interface-type expression gives you access only to methods and properties 
declared in the interface, not to other members of the implementing class.

• An interface-type expression cannot reference an object whose class implements a 
descendant interface, unless the class (or one that it inherits from) explicitly 
implements the ancestor interface as well.

For example,

type
IAncestor = interface
end;

IDescendant = interface(IAncestor)
procedure P1;

end;

TSomething = class(TInterfacedObject, IDescendant)
procedure P1;
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procedure P2;
end;
ƒ

var
D: IDescendant;
A: IAncestor;

begin
D := TSomething.Create; // works!
A := TSomething.Create; // error
D.P1; // works!
D.P2; // error

end;

In this example,

• A is declared as a variable of type IAncestor. Because TSomething does not list 
IAncestor among the interfaces it implements, a TSomething instance cannot be 
assigned to A. But if we changed TSomething’s declaration to

TSomething = class(TInterfacedObject, IAncestor, IDescendant)
ƒ

the first error would become a valid assignment.

• D is declared as a variable of type IDescendant. While D references an instance of 
TSomething, we cannot use it to access TSomething’s P2 method, since P2 is not a 
method of IDescendant. But if we changed D’s declaration to

D: TSomething;

the second error would become a valid method call.

Interface references are managed through reference-counting, which depends on the 
_AddRef and _Release methods inherited from IInterface. When an object is referenced 
only through interfaces, there is no need to destroy it manually; the object is 
automatically destroyed when the last reference to it goes out of scope.

Global interface-type variables can be initialized only to nil.

To determine whether an interface-type expression references an object, pass it to the 
standard function Assigned.

Interface assignment-compatibility

A class type is assignment-compatible with any interface type implemented by the 
class. An interface type is assignment-compatible with any ancestor interface type. 
The value nil can be assigned to any interface-type variable.

An interface-type expression can be assigned to a variant. If the interface is of type 
IDispatch or a descendant, the variant receives the type code varDispatch. Otherwise, 
the variant receives the type code varUnknown.

A variant whose type code is varEmpty, varUnknown, or varDispatch can be assigned 
to an IInterface variable. A variant whose type code is varEmpty or varDispatch can be 
assigned to an IDispatch variable.
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Interface typecasts

Interface types follow the same rules as class types in variable and value typecasts. 
Class-type expressions can be cast to interface types—for example, 
IMyInterface(SomeObject)—provided the class implements the interface.

An interface-type expression can be cast to Variant. If the interface is of type IDispatch 
or a descendant, the resulting variant has the type code varDispatch. Otherwise, the 
resulting variant has the type code varUnknown.

A variant whose type code is varEmpty, varUnknown, or varDispatch can be cast to 
IInterface. A variant whose type code is varEmpty or varDispatch can be cast to 
IDispatch.

Interface querying
You can use the as operator to perform checked interface typecasts. This is known as 
interface querying, and it yields an interface-type expression from an object reference 
or from another interface reference, based on the actual (runtime) type of the object. 
An interface query has the form

object as interface

where object is an expression of an interface or variant type or denotes an instance of 
a class that implements an interface, and interface is any interface declared with a 
GUID.

An interface query returns nil if object is nil. Otherwise, it passes the GUID of interface 
to the QueryInterface method in object, raising an exception unless QueryInterface 
returns zero. If QueryInterface returns zero (indicating that object’s class implements 
interface), the interface query returns an interface reference to object.

Automation objects (Windows only)
An object whose class implements the IDispatch interface (declared in the System unit) 
is an Automation object. Automation is available on Windows only.

Dispatch interface types (Windows only)

Dispatch interface types define the methods and properties that an Automation 
object implements through IDispatch. Calls to methods of a dispatch interface are 
routed through IDispatch’s Invoke method at runtime; a class cannot implement a 
dispatch interface.

A dispatch interface type declaration has the form

type interfaceName = dispinterface
['{GUID}']
memberList

end;
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where ['{GUID}'] is optional and memberList consists of property and method 
declarations. Dispatch interface declarations are similar to regular interface 
declarations, but they cannot specify an ancestor. For example,

type
IStringsDisp = dispinterface

['{EE05DFE2-5549-11D0-9EA9-0020AF3D82DA}']
property ControlDefault[Index: Integer]: OleVariant dispid 0; default;
function Count: Integer; dispid 1;
property Item[Index: Integer]: OleVariant dispid 2;
procedure Remove(Index: Integer); dispid 3;
procedure Clear; dispid 4;
function Add(Item: OleVariant): Integer; dispid 5;
function _NewEnum: IUnknown; dispid -4;

end;

Dispatch interface methods (Windows only)
Methods of a dispatch interface are prototypes for calls to the Invoke method of the 
underlying IDispatch implementation. To specify an Automation dispatch ID for a 
method, include the dispid directive in its declaration, followed by an integer 
constant; specifying an already used ID causes an error.

A method declared in a dispatch interface cannot contain directives other than 
dispid. Parameter and result types must be automatable—that is, they must be Byte, 
Currency, Real, Double, Longint, Integer, Single, Smallint, AnsiString, WideString, 
TDateTime, Variant, OleVariant, WordBool, or any interface type.

Dispatch interface properties
Properties of a dispatch interface do not include access specifiers. They can be 
declared as read only or write only. To specify a dispatch ID for a property, include 
the dispid directive in its declaration, followed by an integer constant; specifying an 
already used ID causes an error. Array properties can be declared as default. No 
other directives are allowed in dispatch-interface property declarations.

Accessing Automation objects (Windows only)

Use variants to access Automation objects. When a variant references an Automation 
object, you can call the object’s methods and read or write to its properties through 
the variant. To do this, you must include ComObj in the uses clause of one of your 
units or your program or library.

Automation object method calls are bound at runtime and require no previous 
method declarations. The validity of these calls is not checked at compile time.

The following example illustrates Automation method calls. The CreateOleObject 
function (defined in ComObj) returns an IDispatch reference to an Automation object 
and is assignment-compatible with the variant Word.
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var
Word: Variant;

begin
Word := CreateOleObject('Word.Basic');
Word.FileNew('Normal');
Word.Insert('This is the first line'#13);
Word.Insert('This is the second line'#13);
Word.FileSaveAs('c:\temp\test.txt', 3);

end;

You can pass interface-type parameters to Automation methods.

Variant arrays with an element type of varByte are the preferred method of passing 
binary data between Automation controllers and servers. Such arrays are subject to 
no translation of their data, and can be efficiently accessed using the VarArrayLock 
and VarArrayUnlock routines.

Automation object method-call syntax
The syntax of an Automation object method call or property access is similar to that 
of a normal method call or property access. Automation method calls, however, can 
use both positional and named parameters. (But some Automation servers do not 
support named parameters.)

A positional parameter is simply an expression. A named parameter consists of a 
parameter identifier, followed by the := symbol, followed by an expression. 
Positional parameters must precede any named parameters in a method call. Named 
parameters can be specified in any order.

Some Automation servers allow you to omit parameters from a method call, 
accepting their default values. For example,

Word.FileSaveAs('test.doc');
Word.FileSaveAs('test.doc', 6);
Word.FileSaveAs('test.doc',,,'secret');
Word.FileSaveAs('test.doc', Password := 'secret');
Word.FileSaveAs(Password := 'secret', Name := 'test.doc');

Automation method call parameters can be of integer, real, string, Boolean, and 
variant types. A parameter is passed by reference if the parameter expression 
consists only of a variable reference, and if the variable reference is of type Byte, 
Smallint, Integer, Single, Double, Currency, TDateTime, AnsiString, WordBool, or Variant. 
If the expression is not of one of these types, or if it is not just a variable, the 
parameter is passed by value. Passing a parameter by reference to a method that 
expects a value parameter causes COM to fetch the value from the reference 
parameter. Passing a parameter by value to a method that expects a reference 
parameter causes an error.
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Dual interfaces (Windows only)

A dual interface is an interface that supports both compile-time binding and runtime 
binding through Automation. Dual interfaces must descend from IDispatch.

All methods of a dual interface (except from those inherited from IInterface and 
IDispatch) must use the safecall convention, and all method parameter and result 
types must be automatable. (The automatable types are Byte, Currency, Real, Double, 
Real48, Integer, Single, Smallint, AnsiString, ShortString, TDateTime, Variant, 
OleVariant, and WordBool.)
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11
Chapter11Memory management

This chapter explains how programs use memory and describes the internal formats 
of Object Pascal data types.

The memory manager (Windows only)
Note Linux uses glibc functions such as malloc for memory management. For information, 

refer to the malloc man page on your Linux system.

On Windows systems, the memory manager manages all dynamic memory 
allocations and deallocations in an application. The New, Dispose, GetMem, 
ReallocMem, and FreeMem standard procedures use the memory manager, and all 
objects and long strings are allocated through the memory manager.

On Windows, the memory manager is optimized for applications that allocate large 
numbers of small- to medium-sized blocks, as is typical for object-oriented 
applications and applications that process string data. Other memory managers, such 
as the implementations of GlobalAlloc, LocalAlloc, and private heap support in 
Windows, typically do not perform well in such situations, and would slow down an 
application if they were used directly.

To ensure the best performance, the memory manager interfaces directly with the 
Win32 virtual memory API (the VirtualAlloc and VirtualFree functions). The memory 
manager reserves memory from the operating system in 1-MB sections of address 
space, and commits memory as required in 16-KB increments. It decommits and 
releases unused memory in 16-KB and 1-MB sections. For smaller blocks, committed 
memory is further suballocated.

Memory manager blocks are always rounded upward to a 4-byte boundary, and 
always include a 4-byte header in which the size of the block and other status bits are 
stored. This means that memory manager blocks are always double-word-aligned, 
which guarantees optimal CPU performance when addressing the block.
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The memory manager maintains two status variables, AllocMemCount and 
AllocMemSize, which contain the number of currently allocated memory blocks and 
the combined size of all currently allocated memory blocks. Applications can use 
these variables to display status information for debugging.

The System unit provides two procedures, GetMemoryManager and 
SetMemoryManager, that allow applications to intercept low-level memory manager 
calls. The System unit also provides a function called GetHeapStatus that returns a 
record containing detailed memory-manager status information. For further 
information about these routines, see the online Help.

Variables

Global variables are allocated on the application data segment and persist for the 
duration of the program. Local variables (declared within procedures and functions) 
reside in an application’s stack. Each time a procedure or function is called, it 
allocates a set of local variables; on exit, the local variables are disposed of. Compiler 
optimization may eliminate variables earlier.

Note On Linux, stack size is set by the environment only.

On Windows, an application’s stack is defined by two values: the minimum stack size 
and the maximum stack size. The values are controlled through the $MINSTACKSIZE 
and $MAXSTACKSIZE compiler directives, and default to 16,384 (16K) and 
1,048,576 (1M) respectively. An application is guaranteed to have the minimum stack 
size available, and an application’s stack is never allowed to grow larger than the 
maximum stack size. If there is not enough memory available to satisfy an 
application’s minimum stack requirement, Windows will report an error upon 
attempting to start the application.

If a Windows application requires more stack space than specified by the minimum 
stack size, additional memory is automatically allocated in 4K increments. If 
allocation of additional stack space fails, either because more memory is not available 
or because the total size of the stack would exceed the maximum stack size, an 
EStackOverflow exception is raised. (Stack overflow checking is completely automatic. 
The $S compiler directive, which originally controlled overflow checking, is 
maintained for backward compatibility.)

On Windows or Linux, dynamic variables created with the GetMem or New 
procedure are heap-allocated and persist until they are deallocated with FreeMem or 
Dispose.

Long strings, wide strings, dynamic arrays, variants, and interfaces are heap-
allocated, but their memory is managed automatically.

Internal data formats
The following sections describe the internal formats of Object Pascal data types.
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Integer types

The format of an integer-type variable depends on its minimum and maximum 
bounds.

• If both bounds are within the range –128..127 (Shortint), the variable is stored as a 
signed byte.

• If both bounds are within the range 0..255 (Byte), the variable is stored as an 
unsigned byte.

• If both bounds are within the range –32768..32767 (Smallint), the variable is stored 
as a signed word.

• If both bounds are within the range 0..65535 (Word), the variable is stored as an 
unsigned word.

• If both bounds are within the range –2147483648..2147483647 (Longint), the 
variable is stored as a signed double word.

• If both bounds are within the range 0..4294967295 (Longword), the variable is 
stored as an unsigned double word.

• Otherwise, the variable is stored as a signed quadruple word (Int64).

Character types

A Char, an AnsiChar, or a subrange of a Char type is stored as an unsigned byte. A 
WideChar is stored as an unsigned word.

Boolean types

A Boolean type is stored as a Byte, a ByteBool is stored as a Byte, a WordBool type is 
stored as a Word, and a LongBool is stored as a Longint.

A Boolean can assume the values 0 (False) and 1 (True). ByteBool, WordBool, and 
LongBool types can assume the values 0 (False) or nonzero (True).

Enumerated types

An enumerated type is stored as an unsigned byte if the enumeration has no more 
than 256 values and the type was declared in the {$Z1} state (the default). If an 
enumerated type has more than 256 values, or if the type was declared in the {$Z2} 
state, it is stored as an unsigned word. If an enumerated type is declared in the {$Z4} 
state, it is stored as an unsigned double-word.
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Real types

The real types store the binary representation of a sign (+ or –), an exponent, and a 
significand. A real value has the form

+/– significand * 2exponent

where the significand has a single bit to the left of the binary decimal point. (That is, 0 
<= significand < 2.)

In the figures that follow, the most significant bit is always on the left and the least 
significant bit on the right. The numbers at the top indicate the width (in bits) of each 
field, with the leftmost items stored at the highest addresses. For example, for a 
Real48 value, e is stored in the first byte, f in the following five bytes, and s in the most 
significant bit of the last byte.

The Real48 type
A 6-byte (48-bit) Real48 number is divided into three fields:

If 0 < e <= 255, the value v of the number is given by

v = (–1)s * 2(e–129) * (1.f)

If e = 0, then v = 0.

The Real48 type can’t store denormals, NaNs, and infinities. Denormals become zero 
when stored in a Real48, while NaNs and infinities produce an overflow error if an 
attempt is made to store them in a Real48.

The Single type
A 4-byte (32-bit) Single number is divided into three fields:

The value v of the number is given by

if 0 < e < 255, then v = (–1)s * 2(e–127) * (1.f)

if e = 0 and f <> 0, then v = (–1)s * 2(–126) * (0.f)
if e = 0 and f = 0, then v = (–1)s * 0
if e = 255 and f = 0, then v = (–1)s * Inf
if e = 255 and f <> 0, then v is a NaN

1 39 8

s f e

1 8 23

s e f
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The Double type
An 8-byte (64-bit) Double number is divided into three fields:

The value v of the number is given by

if 0 < e < 2047, then v = (–1)s * 2(e–1023) * (1.f)

if e = 0 and f <> 0, then v = (–1)s * 2(–1022) * (0.f)
if e = 0 and f = 0, then v = (–1)s * 0
if e = 2047 and f = 0, then v = (–1)s * Inf
if e = 2047 and f <> 0, then v is a NaN

The Extended type
A 10-byte (80-bit) Extended number is divided into four fields:

The value v of the number is given by

if 0 <= e < 32767, then v = (–1)s * 2(e–16383) * (i.f)

if e = 32767 and f = 0, then v = (–1)s * Inf
if e = 32767 and f <> 0, then v is a NaN

The Comp type
An 8-byte (64-bit) Comp number is stored as a signed 64-bit integer.

The Currency type
An 8-byte (64-bit) Currency number is stored as a scaled and signed 64-bit integer 
with the four least-significant digits implicitly representing four decimal places.

Pointer types

A Pointer type is stored in 4 bytes as a 32-bit address. The pointer value nil is stored 
as zero.

Short string types

A string occupies as many bytes as its maximum length plus one. The first byte 
contains the current dynamic length of the string, and the following bytes contain the 
characters of the string.

The length byte and the characters are considered unsigned values. Maximum string 
length is 255 characters plus a length byte (string[255]).

1 11 52

s e f

1 15 1 63

s e i f
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Long string types

A long string variable occupies four bytes of memory which contain a pointer to a 
dynamically allocated string. When a long string variable is empty (contains a zero-
length string), the string pointer is nil and no dynamic memory is associated with the 
string variable. For a nonempty string value, the string pointer points to a 
dynamically allocated block of memory that contains the string value in addition to a 
32-bit length indicator and a 32-bit reference count. The table below shows the layout 
of a long-string memory block.

The NULL character at the end of a long string memory block is automatically 
maintained by the compiler and the built-in string handling routines. This makes it 
possible to typecast a long string directly to a null-terminated string.

For string constants and literals, the compiler generates a memory block with the 
same layout as a dynamically allocated string, but with a reference count of –1. When 
a long string variable is assigned a string constant, the string pointer is assigned the 
address of the memory block generated for the string constant. The built-in string 
handling routines know not to attempt to modify blocks that have a reference count 
of –1.

Wide string types

Note On Linux, wide strings are implemented exactly as long strings.

On Windows, a wide string variable occupies four bytes of memory which contain a 
pointer to a dynamically allocated string. When a wide string variable is empty 
(contains a zero-length string), the string pointer is nil and no dynamic memory is 
associated with the string variable. For a nonempty string value, the string pointer 
points to a dynamically allocated block of memory that contains the string value in 
addition to a 32-bit length indicator. The table below shows the layout of a wide 
string memory block on Windows.

Table 11.1 Long string dynamic memory layout

Offset Contents

–8 32-bit reference-count

–4 length in bytes

0..Length – 1 character string

Length NULL character

Table 11.2 Wide string dynamic memory layout (Windows only)

Offset Contents

–4 32-bit length indicator (in bytes)

0..Length – 1 character string

Length NULL character
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The string length is the number of bytes, so it is twice the number of wide characters 
contained in the string.

The NULL character at the end of a wide string memory block is automatically 
maintained by the compiler and the built-in string handling routines. This makes it 
possible to typecast a wide string directly to a null-terminated string.

Set types

A set is a bit array where each bit indicates whether an element is in the set or not. 
The maximum number of elements in a set is 256, so a set never occupies more than 
32 bytes. The number of bytes occupied by a particular set is equal to

(Max div 8) – (Min div 8) + 1

where Max and Min are the upper and lower bounds of the base type of the set. The 
byte number of a specific element E is

(E div 8) – (Min div 8)

and the bit number within that byte is

E mod 8

where E denotes the ordinal value of the element. When possible, the compiler stores 
sets in CPU registers, but a set always resides in memory if it is larger than the 
generic Integer type or if the program contains code that takes the address of the set.

Static array types

A static array is stored as a contiguous sequence of variables of the component type 
of the array. The components with the lowest indexes are stored at the lowest 
memory addresses. A multidimensional array is stored with the rightmost 
dimension increasing first.

Dynamic array types

A dynamic-array variable occupies four bytes of memory which contain a pointer to 
the dynamically allocated array. When the variable is empty (uninitialized) or holds 
a zero-length array, the pointer is nil and no dynamic memory is associated with the 
variable. For a nonempty array, the variable points to a dynamically allocated block 
of memory that contains the array in addition to a 32-bit length indicator and a 32-bit 
reference count. The table below shows the layout of a dynamic-array memory block.

Table 11.3 Dynamic array memory layout  

Offset Contents

–8 32-bit reference-count

–4 32-bit length indicator (number of elements)

0..Length * (size of element) – 1 array elements
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Record types

When a record type is declared in the {$A+} state (the default), and when the 
declaration does not include a packed modifier, the type is an unpacked record type, 
and the fields of the record are aligned for efficient access by the CPU. The alignment 
is controlled by the type of each field and by whether fields are declared together. 
Every data type has an inherent alignment, which is automatically computed by the 
compiler. The alignment can be 1, 2, 4, or 8, and represents the byte boundary that a 
value of the type must be stored on to provide the most efficient access. The table 
below lists the alignments for all data types.

To ensure proper alignment of the fields in an unpacked record type, the compiler 
inserts an unused byte before fields with an alignment of 2, and up to three unused 
bytes before fields with an alignment of 4, if required. Finally, the compiler rounds 
the total size of the record upward to the byte boundary specified by the largest 
alignment of any of the fields.

If two fields share a common type specification, they are packed even if the 
declaration does not include the packed modifier and the record type is not declared 
in the {$A–} state. Thus, for example, given the following declaration

type
TMyRecord = record

A, B: Extended;
C: Extended;

end;

A and B are packed (aligned on byte boundaries) because they share the same type 
specification. The compiler pads the structure with unused bytes to ensure that C 
appears on a quadword boundary.

When a record type is declared in the {$A–} state, or when the declaration includes 
the packed modifier, the fields of the record are not aligned, but are instead assigned 
consecutive offsets. The total size of such a packed record is simply the size of all the 
fields. Because data alignment can change, it's a good idea to pack any record 
structure that you intend to write to disk or pass in memory to another module 
compiled using a different version of the compiler.

Table 11.4 Type alignment masks

Type Alignment 

Ordinal types size of the type (1, 2, 4, or 8)

Real types 2 for Real48, 4 for Single, 8 for Double and Extended

Short string types 1

Array types same as the element type of the array.

Record types the largest alignment of the fields in the record

Set types size of the type if 1, 2, or 4, otherwise 1

All other types determined by the $A directive.



M e m o r y  m a n a g e m e n t 11-9

I n t e r n a l  d a t a  f o r m a t s

File types

File types are represented as records. Typed files and untyped files occupy 332 bytes, 
which are laid out as follows:

type
TFileRec = packed record

Handle: Integer;
Mode: word;
Flags: word;
case Byte of

0: (RecSize: Cardinal);
1: (BufSize: Cardinal;

BufPos: Cardinal;
BufEnd: Cardinal;
BufPtr: PChar;
OpenFunc: Pointer;
InOutFunc: Pointer;
FlushFunc: Pointer;
CloseFunc: Pointer;
UserData: array[1..32] of Byte;
Name: array[0..259] of Char; );

end;

Text files occupy 460 bytes, which are laid out as follows:

type
TTextBuf = array[0..127] of Char;
TTextRec = packed record

Handle: Integer;
Mode: word;
Flags: word;
BufSize: Cardinal;
BufPos: Cardinal;
BufEnd: Cardinal;

 BufPtr: PChar;
OpenFunc: Pointer;
InOutFunc: Pointer;
FlushFunc: Pointer;
CloseFunc: Pointer;
UserData: array[1..32] of Byte;
Name: array[0..259] of Char;
Buffer: TTextBuf;

end;

Handle contains the file’s handle (when the file is open).

The Mode field can assume one of the values

const
fmClosed = $D7B0;
fmInput = $D7B1;
fmOutput = $D7B2;
fmInOut = $D7B3;
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where fmClosed indicates that the file is closed, fmInput and fmOutput indicate a text 
file that has been reset (fmInput) or rewritten (fmOutput), fmInOut indicates a typed or 
untyped file that has been reset or rewritten. Any other value indicates that the file 
variable is not assigned (and hence not initialized).

The UserData field is available for user-written routines to store data in.

Name contains the file name, which is a sequence of characters terminated by a null 
character (#0).

For typed files and untyped files, RecSize contains the record length in bytes, and the 
Private field is unused but reserved.

For text files, BufPtr is a pointer to a buffer of BufSize bytes, BufPos is the index of the 
next character in the buffer to read or write, and BufEnd is a count of valid characters 
in the buffer. OpenFunc, InOutFunc, FlushFunc, and CloseFunc are pointers to the I/O 
routines that control the file; see “Device functions” on page 8-5. Flags determines 
the line break style as follows:

All other Flags bits are reserved for future use. See also DefaultTextLineBreakStyle and 
SetLineBreakStyle.

Procedural types

A procedure pointer is stored as a 32-bit pointer to the entry point of a procedure or 
function. A method pointer is stored as a 32-bit pointer to the entry point of a 
method, followed by a 32-bit pointer to an object.

Class types

A class-type value is stored as a 32-bit pointer to an instance of the class, which is 
called an object. The internal data format of an object resembles that of a record. The 
object’s fields are stored in order of declaration as a sequence of contiguous variables. 
Fields are always aligned, corresponding to an unpacked record type. Any fields 
inherited from an ancestor class are stored before the new fields defined in the 
descendant class.

The first 4-byte field of every object is a pointer to the virtual method table (VMT) of the 
class. There is exactly one VMT per class (not one per object); distinct class types, no 
matter how similar, never share a VMT. VMT’s are built automatically by the 
compiler, and are never directly manipulated by a program. Pointers to VMT’s, 
which are automatically stored by constructor methods in the objects they create, are 
also never directly manipulated by a program.

The layout of a VMT is shown in the following table. At positive offsets, a VMT 
consists of a list of 32-bit method pointers—one per user-defined virtual method in 
the class type—in order of declaration. Each slot contains the address of the 

bit 0 clear LF line breaks

bit 0 set CRLF line breaks
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corresponding virtual method’s entry point. This layout is compatible with a C++ v-
table and with COM. At negative offsets, a VMT contains a number of fields that are 
internal to Object Pascal’s implementation. Applications should use the methods 
defined in TObject to query this information, since the layout is likely to change in 
future implementations of Object Pascal.

Class reference types

A class-reference value is stored as a 32-bit pointer to the virtual method table (VMT) 
of a class.

Variant types

A variant is stored as a 16-byte record that contains a type code and a value (or a 
reference to a value) of the type given by the code. The System and Variants units 
define constants and types for variants.

The TVarData type represents the internal structure of a Variant variable (on 
Windows, this is identical to the Variant type used by COM and the Win32 API). The 

Table 11.5 Virtual method table layout

Offset Type Description

–76 Pointer pointer to virtual method table (or nil)

–72 Pointer pointer to interface table (or nil)

–68 Pointer pointer to Automation information table (or nil)

–64 Pointer pointer to instance initialization table (or nil)

–60 Pointer pointer to type information table (or nil)

–56 Pointer pointer to field definition table (or nil)

–52 Pointer pointer to method definition table (or nil)

–48 Pointer pointer to dynamic method table (or nil)

–44 Pointer pointer to short string containing class name

–40 Cardinal instance size in bytes

–36 Pointer pointer to a pointer to ancestor class (or nil)

–32 Pointer pointer to entry point of SafecallException method (or nil)

–28 Pointer entry point of AfterConstruction method

–24 Pointer entry point of BeforeDestruction method

–20 Pointer entry point of Dispatch method

–16 Pointer entry point of DefaultHandler method

–12 Pointer entry point of NewInstance method

–8 Pointer entry point of FreeInstance method

–4 Pointer entry point of Destroy destructor

0 Pointer entry point of first user-defined virtual method

4 Pointer entry point of second user-defined virtual method

ƒ ƒ ƒ
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TVarData type can be used in typecasts of Variant variables to access the internal 
structure of a variable.

The VType field of a TVarData record contains the type code of the variant in the 
lower twelve bits (the bits defined by the varTypeMask constant). In addition, the 
varArray bit may be set to indicate that the variant is an array, and the varByRef bit 
may be set to indicate that the variant contains a reference as opposed to a value.

The Reserved1, Reserved2, and Reserved3 fields of a TVarData record are unused.

The contents of the remaining eight bytes of a TVarData record depend on the VType 
field. If neither the varArray nor the varByRef bits are set, the variant contains a value 
of the given type.

If the varArray bit is set, the variant contains a pointer to a TVarArray structure that 
defines an array. The type of each array element is given by the varTypeMask bits in 
the VType field.

If the varByRef bit is set, the variant contains a reference to a value of the type given 
by the varTypeMask and varArray bits in the VType field.

The varString type code is private. Variants containing a varString value should never 
be passed to a non-Delphi function. On Windows, Delphi's Automation support 
automatically converts varString variants to varOleStr variants before passing them as 
parameters to external functions.

On Linux, VT_decimal is not supported.
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This chapter explains how parameters and function results are stored and 
transferred. The final section discusses exit procedures.

Parameters and function results
Treatment of parameters and function results is determined by several factors, 
including calling conventions, parameter semantics, and the type and size of the 
value being passed.

Parameter passing

Parameters are transferred to procedures and functions via CPU registers or the 
stack, depending on the routine’s calling convention. For information about calling 
conventions, see “Calling conventions” on page 6-4.

Variable (var) parameters are always passed by reference, as 32-bit pointers that 
point to the actual storage location.

Value and constant (const) parameters are passed by value or by reference, 
depending on the type and size of the parameter:

• An ordinal parameter is passed as an 8-bit, 16-bit, 32-bit, or 64-bit value, using the 
same format as a variable of the corresponding type.

• A real parameter is always passed on the stack. A Single parameter occupies 4 
bytes, and a Double, Comp, or Currency parameter occupies 8 bytes. A Real48 
occupies 8 bytes, with the Real48 value stored in the lower 6 bytes. An Extended 
occupies 12 bytes, with the Extended value stored in the lower 10 bytes.

• A short-string parameter is passed as a 32-bit pointer to a short string.
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• A long-string or dynamic-array parameter is passed as a 32-bit pointer to the 
dynamic memory block allocated for the long string. The value nil is passed for an 
empty long string.

• A pointer, class, class-reference, or procedure-pointer parameter is passed as a 32-
bit pointer.

• A method pointer is passed on the stack as two 32-bit pointers. The instance 
pointer is pushed before the method pointer so that the method pointer occupies 
the lowest address.

• Under the register and pascal conventions, a variant parameter is passed as a 32-
bit pointer to a Variant value.

• Sets, records, and static arrays of 1, 2, or 4 bytes are passed as 8-bit, 16-bit, and 32-
bit values. Larger sets, records, and static arrays are passed as 32-bit pointers to 
the value. An exception to this rule is that records are always passed directly on 
the stack under the cdecl, stdcall, and safecall conventions; the size of a record 
passed this way is rounded upward to the nearest double-word boundary.

• An open-array parameter is passed as two 32-bit values. The first value is a pointer 
to the array data, and the second value is one less than the number of elements in 
the array.

When two parameters are passed on the stack, each parameter occupies a multiple of 
4 bytes (a whole number of double words). For an 8-bit or 16-bit parameter, even 
though the parameter occupies only a byte or a word, it is passed as a double word. 
The contents of the unused parts of the double word are undefined.

Under the pascal, cdecl, stdcall and safecall conventions, all parameters are passed 
on the stack. Under the pascal convention, parameters are pushed in the order of 
their declaration (left-to-right), so that the first parameter ends up at the highest 
address and the last parameter ends up at the lowest address. Under the cdecl, 
stdcall, and safecall conventions, parameters are pushed in reverse order of 
declaration (right-to-left), so that the first parameter ends up at the lowest address 
and the last parameter ends up at the highest address.

Under the register convention, up to three parameters are passed in CPU registers, 
and the rest (if any) are passed on the stack. The parameters are passed in order of 
declaration (as with the pascal convention), and the first three parameters that 
qualify are passed in the EAX, EDX, and ECX registers, in that order. Real, method-
pointer, variant, Int64, and structured types (see “Structured types” on page 5-16 do 
not qualify as register parameters, but all other parameters do. If more than three 
parameters qualify as register parameters, the first three are passed in EAX, EDX, 
and ECX, and the remaining parameters are pushed onto the stack in order of 
declaration. For example, given the declaration

procedure Test(A: Integer; var B: Char; C: Double; const D: string; E: Pointer);

a call to Test passes A in EAX as a 32-bit integer, B in EDX as a pointer to a Char, and 
D in ECX as a pointer to a long-string memory block; C and E are pushed onto the 
stack as two double-words and a 32-bit pointer, in that order.
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Register saving conventions
Procedures and functions must preserve the EBX, ESI, EDI, and EBP registers, but 
can modify the EAX, EDX, and ECX registers. When implementing a constructor or 
destructor in assembler, be sure to preserve the DL register. Procedures and 
functions are invoked with the assumption that the CPU’s direction flag is cleared 
(corresponding to a CLD instruction) and must return with the direction flag cleared. 

Note Object Pascal procedures and functions are generally invoked with the assumption 
that the FPU stack is empty: The compiler tries to use all eight FPU stack entries 
when it generates code.

When working with the MMX and XMM instructions, be user to preserve the values 
of the xmm and mm registers. Object Pascal functions are invoked with the 
assumption that the x87 FPU data registers are are available for use by x87 floating 
point instructions. That is, the compiler assumes that the EMMS/FEMMS has been 
called after MMX operations. Object Pascal functions do not make any assumptions 
about the state and content of xmm registers. They do not guarantee that the content 
of xmm registers is unchanged.

Function results

The following conventions are used for returning function result values.

• Ordinal results are returned, when possible, in a CPU register. Bytes are returned 
in AL, words are returned in AX, and double-words are returned in EAX.

• Real results are returned in the floating-point coprocessor’s top-of-stack register 
(ST(0)). For function results of type Currency, the value in ST(0) is scaled by 10000. 
For example, the Currency value 1.234 is returned in ST(0) as 12340.

• For a string, dynamic array, method pointer, variant, or Int64 result, the effects are 
the same as if the function result were declared as an additional var parameter 
following the declared parameters. In other words, the caller passes an additional 
32-bit pointer that points to a variable in which to return the function result.

• Pointer, class, class-reference, and procedure-pointer results are returned in EAX.

• For static-array, record, and set results, if the value occupies one byte it is returned 
in AL; if the value occupies two bytes it is returned in AX; and if the value 
occupies four bytes it is returned in EAX. Otherwise, the result is returned in an 
additional var parameter that is passed to the function after the declared 
parameters.

Method calls

Methods use the same calling conventions as ordinary procedures and functions, 
except that every method has an additional implicit parameter Self, which is a 
reference to the instance or class in which the method is called. The Self parameter is 
passed as a 32-bit pointer.
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• Under the register convention, Self behaves as if it were declared before all other 
parameters. It is therefore always passed in the EAX register.

• Under the pascal convention, Self behaves as if it were declared after all other 
parameters (including the additional var parameter sometimes passed for a 
function result). It is therefore pushed last, ending up at a lower address than all 
other parameters.

• Under the cdecl, stdcall, and safecall conventions, Self behaves as if it were 
declared before all other parameters, but after the additional var parameter (if any) 
passed for a function result. It is therefore the last to be pushed, except for the 
additional var parameter.

Constructors and destructors
Constructors and destructors use the same calling conventions as other methods, 
except that an additional Boolean flag parameter is passed to indicate the context of 
the constructor or destructor call.

A value of False in the flag parameter of a constructor call indicates that the 
constructor was invoked through an instance object or using the inherited keyword. 
In this case, the constructor behaves like an ordinary method. A value of True in the 
flag parameter of a constructor call indicates that the constructor was invoked 
through a class reference. In this case, the constructor creates an instance of the class 
given by Self, and returns a reference to the newly created object in EAX.

A value of False in the flag parameter of a destructor call indicates that the destructor 
was invoked using the inherited keyword. In this case, the destructor behaves like an 
ordinary method. A value of True in the flag parameter of a destructor call indicates 
that the destructor was invoked through an instance object. In this case, the 
destructor deallocates the instance given by Self just before returning.

The flag parameter behaves as if it were declared before all other parameters. Under 
the register convention, it is passed in the DL register. Under the pascal convention, 
it is pushed before all other parameters. Under the cdecl, stdcall, and safecall 
conventions, it is pushed just before the Self parameter.

Since the DL register indicates whether the constructor or destructor is the outermost 
in the call stack, you must restore the value of DL before exiting so that 
BeforeDestruction or AfterConstruction can be called properly.

Exit procedures
Exit procedures ensure that specific actions—such as updating and closing files—are 
carried out before a program terminates. The ExitProc pointer variable allows you to 
“install” an exit procedure, so that it is always called as part of the program’s 
termination—whether the termination is normal, forced by a call to Halt, or the result 
of a runtime error. An exit procedure takes no parameters.

Note It is recommended that you use finalization sections rather than exit procedures for 
all exit behavior. (See “The finalization section” on page 3-5.) Exit procedures are 
available only for executables. For shared objects (Linux) or .DLLs (Windows) you 
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can use a similar variable, DllProc, which is called when the library is loaded as well 
as when it is unloaded. For packages, exit behavior must be implemented in a 
finalization section. All exit procedures are called before execution of finalization 
sections.

Units as well as programs can install exit procedures. A unit can install an exit 
procedure as part of its initialization code, relying on the procedure to close files or 
perform other clean-up tasks.

When implemented properly, an exit procedure is part of a chain of exit procedures. 
The procedures are executed in reverse order of installation, ensuring that the exit 
code of one unit isn’t executed before the exit code of any units that depend on it. To 
keep the chain intact, you must save the current contents of ExitProc before pointing 
it to the address of your own exit procedure. Also, the first statement in your exit 
procedure must reinstall the saved value of ExitProc.

The following code shows a skeleton implementation of an exit procedure.

var
ExitSave: Pointer;

procedure MyExit;
begin

ExitProc := ExitSave; // always restore old vector first
ƒ

end;

begin
ExitSave := ExitProc;
ExitProc := @MyExit;
ƒ

end.

On entry, the code saves the contents of ExitProc in ExitSave, then installs the MyExit 
procedure. When called as part of the termination process, the first thing MyExit does 
is reinstall the previous exit procedure.

The termination routine in the runtime library keeps calling exit procedures until 
ExitProc becomes nil. To avoid infinite loops, ExitProc is set to nil before every call, so 
the next exit procedure is called only if the current exit procedure assigns an address 
to ExitProc. If an error occurs in an exit procedure, it is not called again.

An exit procedure can learn the cause of termination by examining the ExitCode 
integer variable and the ErrorAddr pointer variable. In case of normal termination, 
ExitCode is zero and ErrorAddr is nil. In case of termination through a call to Halt, 
ExitCode contains the value passed to Halt and ErrorAddr is nil. In case of termination 
due to a runtime error, ExitCode contains the error code and ErrorAddr contains the 
address of the invalid statement.

The last exit procedure (the one installed by the runtime library) closes the Input and 
Output files. If ErrorAddr is not nil, it outputs a runtime error message. To output 
your own runtime error message, install an exit procedure that examines ErrorAddr 
and outputs a message if it’s not nil; before returning, set ErrorAddr to nil so that the 
error is not reported again by other exit procedures.
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Once the runtime library has called all exit procedures, it returns to the operating 
system, passing the value stored in ExitCode as a return code.
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The built-in assembler allows you to write assembly code within Object Pascal 
programs. It has the following features:

• Allows for inline assembly

• Supports all instructions found in the Intel Pentium III, Intel MMX extensions, 
Streaming SIMD Extensions (SSE), and the AMD Athlon (including 3D Now!)

• Provides no macro support, but allows for pure assembly function procedures

• Permits the use of Object Pascal identifiers, such as constants, types, and variables 
in assembly statements

As an alternative to the built-in assembler, you can link to object files that contain 
external procedures and functions. See “Linking to object files” on page 6-7 for more 
information.

Note If you have external assembly code that you want to use in your applications, you 
should consider rewriting it in Object Pascal or minimally reimplement it using the 
inline assembler.

The asm statement
The built-in assembler is accessed through asm statements, which have the form

asm statementList end

where statementList is a sequence of assembly statements separated by semicolons, 
end-of-line characters, or Object Pascal comments.

Comments in an asm statement must be in Object Pascal style. A semicolon does not 
indicate that the rest of the line is a comment.

The reserved word inline and the directive assembler are maintained for backward 
compatibility only. They have no effect on the compiler.
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Register use

In general, the rules of register use in an asm statement are the same as those of an 
external procedure or function. An asm statement must preserve the EDI, ESI, ESP, 
EBP, and EBX registers, but can freely modify the EAX, ECX, and EDX registers. On 
entry to an asm statement, EBP points to the current stack frame and ESP points to 
the top of the stack. Except for ESP and EBP, an asm statement can assume nothing 
about register contents on entry to the statement.

Assembler statement syntax
This syntax of an assembly statement is

Label: Prefix Opcode Operand1, Operand2

where Label is a label, Prefix is an assembly prefix opcode (operation code), Opcode is 
an assembly instruction opcode or directive, and Operand is an assembly expression. 
Label and Prefix are optional. Some opcodes take only one operand, and some take 
none.

Comments are allowed between assembly statements, but not within them. For 
example,

MOV AX,1 {Initial value} { OK }
MOV CX,100 {Count} { OK }

MOV {Initial value} AX,1; { Error! }
MOV CX, {Count} 100 { Error! }

Labels

Labels are used in built-in assembly statements as they are in Object Pascal—by 
writing the label and a colon before a statement. There is no limit to a label’s length. 
As in Object Pascal, labels must be declared in a label declaration part in the block 
containing the asm statement. There is one exception to this rule: local labels.

Local labels are labels that start with an at-sign (@). They consist of an at-sign 
followed by one or more letters, digits, underscores, or at-signs. Use of local labels is 
restricted to asm statements, and the scope of a local label extends from the asm 
reserved word to the end of the asm statement that contains it. A local label doesn’t 
have to be declared.

Instruction opcodes

The built-in assembler supports all of the Intel-documented opcodes for general 
application use. Note that operating system privileged instructions may not be 
supported. Specifically, the following families of instructions are supported:

• Pentium family
• Pentium Pro and Pentium II
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• Pentium III
• Pentium 4

Note Pentium 4 instructions are only supported on Windows.

In addition, the built-in assembler supports the following instruction sets

• AMD 3DNow! (from the AMD K6 onwards)
• AMD Enhanced 3DNow! (from the AMD Athlon onwards)

For a complete description of each instruction, refer to your microprocessor 
documentation.

RET instruction sizing
The RET instruction opcode always generates a near return.

Automatic jump sizing
Unless otherwise directed, the built-in assembler optimizes jump instructions by 
automatically selecting the shortest, and therefore most efficient, form of a jump 
instruction. This automatic jump sizing applies to the unconditional jump instruction 
(JMP), and to all conditional jump instructions when the target is a label (not a 
procedure or function).

For an unconditional jump instruction (JMP), the built-in assembler generates a short 
jump (one-byte opcode followed by a one-byte displacement) if the distance to the 
target label is –128 to 127 bytes. Otherwise it generates a near jump (one-byte opcode 
followed by a two-byte displacement).

For a conditional jump instruction, a short jump (one-byte opcode followed by a one-
byte displacement) is generated if the distance to the target label is –128 to 127 bytes. 
Otherwise, the built-in assembler generates a short jump with the inverse condition, 
which jumps over a near jump to the target label (five bytes in total). For example, the 
assembly statement

JC Stop

where Stop isn’t within reach of a short jump, is converted to a machine code 
sequence that corresponds to this:

JNC Skip
JMP Stop
Skip:

Jumps to the entry points of procedures and functions are always near.

Assembly directives

The built-in assembler supports three assembly define directives: DB (define byte), 
DW (define word), and DD (define double word). Each generates data corresponding 
to the comma-separated operands that follow the directive.

The DB directive generates a sequence of bytes. Each operand can be a constant 
expression with a value between –128 and 255, or a character string of any length. 



13-4 O b j e c t  P a s c a l  L a n g u a g e  G u i d e

A s s e m b l e r  s t a t e m e n t  s y n t a x

Constant expressions generate one byte of code, and strings generate a sequence of 
bytes with values corresponding to the ASCII code of each character.

The DW directive generates a sequence of words. Each operand can be a constant 
expression with a value between –32,768 and 65,535, or an address expression. For an 
address expression, the built-in assembler generates a near pointer—that is, a word 
that contains the offset part of the address.

The DD directive generates a sequence of double words. Each operand can be a 
constant expression with a value between –2,147,483,648 and 4,294,967,295, or an 
address expression. For an address expression, the built-in assembler generates a far 
pointer—that is, a word that contains the offset part of the address, followed by a 
word that contains the segment part of the address.

The DQ directive defines a quad word for Int64 values.

The data generated by the DB, DW, and DD directives is always stored in the code 
segment, just like the code generated by other built-in assembly statements. To 
generate uninitialized or initialized data in the data segment, you should use Object 
Pascal var or const declarations.

Some examples of DB, DW, and DD directives follow.

asm
DB 0FFH { One byte }
DB 0,99 { Two bytes }
DB 'A' { Ord('A') }
DB 'Hello world...',0DH,0AH { String followed by CR/LF }
DB 12,"string" { Object Pascal style string }
DW 0FFFFH { One word }
DW 0,9999 { Two words }
DW 'A' { Same as DB 'A',0 }
DW 'BA' { Same as DB 'A','B' }
DW MyVar { Offset of MyVar }
DW MyProc { Offset of MyProc }
DD 0FFFFFFFFH { One double-word }
DD 0,999999999 { Two double-words }
DD 'A' { Same as DB 'A',0,0,0 }
DD 'DCBA' { Same as DB 'A','B','C','D' }
DD MyVar { Pointer to MyVar }
DD MyProc { Pointer to MyProc }

end;

When an identifier precedes a DB, DW, or DD directive, it causes the declaration of a 
byte-, word-, or double-word-sized variable at the location of the directive. For 
example, the assembler allows the following:

ByteVar DB ?
WordVar DW ?
IntVar DD ?

ƒ
MOV AL,ByteVar
MOV BX,WordVar
MOV ECX,IntVar
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The built-in assembler doesn’t support such variable declarations. The only kind of 
symbol that can be defined in an inline assembly statement is a label. All variables 
must be declared using Object Pascal syntax; the preceding construction can be 
replaced by

var
ByteVar: Byte;
WordVar: Word;
IntVar: Integer;
ƒ

asm
MOV AL,ByteVar
MOV BX,WordVar
MOV ECX,IntVar

end;

SMALL and LARGE can be used determine the width of a displacement:

MOV EAX, [LARGE $1234]

This instruction generates a "normal" move with a 32-bit displacement ($00001234).

MOV EAX, [SMALL $1234]

The second instruction will generate a move with an address size override prefix and 
a 16-bit displacement ($1234).

SMALL can be used to save space. The following example generates an address size 
override and a 2-byte address (in total three bytes)

MOV EAX, [SMALL 123] 

as opposed to 

MOV EAX, [123] 

which will generate no address size override and a 4-byte address (in total four 
bytes).

Two additional directives allow assembly code to access dynamic and virtual 
methods: VMTOFFSET and DMTINDEX.

VMTOFFSET retrieves the offset in bytes of the virtual method pointer table entry of 
the virtual method argument from the beginning of the virtual method table (VMT). 
This directive needs a fully specified class name with a method name as a parameter, 
for example, TExample.VirtualMethod. 

DMTINDEX retrieves the dynamic method table index of the passed dynamic 
method. This directive also needs a fully specified class name with a method name as 
a parameter, for example, TExample.DynamicMethod. To invoke the dynamic 
method, call System.@CallDynaInst with the (E)SI register containing the value 
obtained from DMTINDEX.

Note Methods with the "message" directive are implemented as dynamic methods and can 
also be called using the DMTINDEX technique. For example:

    TMyClass = class
      procedure x; message MYMESSAGE;
    end;
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The following example uses both DMTINDEX and VMTOFFSET to access dynamic 
and virtual methods:

program Project2;

type
  TExample = class
    procedure DynamicMethod; dynamic;
    procedure VirtualMethod; virtual;
  end;

procedure TExample.DynamicMethod;
begin

end;

procedure TExample.VirtualMethod;
begin

end;

procedure CallDynamicMethod(e: TExample);
asm
  // Save ESI register
  PUSH    ESI

  // Instance pointer needs to be in EAX
  MOV     EAX, e
  // DMT entry index needs to be in (E)SI
  MOV     ESI, DMTINDEX TExample.DynamicMethod
  // Now call the method
  CALL    System.@CallDynaInst

  // Restore ESI register
  POP ESI
end;

procedure CallVirtualMethod(e: TExample);
asm
  // Instance pointer needs to be in EAX
  MOV     EAX, e

  // Retrieve VMT table entry
  MOV     EDX, [EAX]

  // Now call the method at offset VMTOFFSET
  CALL    DWORD PTR [EDX + VMTOFFSET TExample.VirtualMethod]
end;

var
  e: TExample;

begin
  e := TExample.Create;
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  try
    CallDynamicMethod(e);
    CallVirtualMethod(e);
  finally
    e.Free;
  end;
end.

Operands

Inline assembler operands are expressions that consist of constants, registers, 
symbols, and operators.

Within operands, the following reserved words have predefined meanings:

Table 13.1 Built-in assembler reserved words

Reserved words always take precedence over user-defined identifiers. For example,

var
Ch: Char;
ƒ

asm
MOV CH, 1

end;

loads 1 into the CH register, not into the Ch variable. To access a user-defined symbol 
with the same name as a reserved word, you must use the ampersand (&) override 
operator:

MOV &Ch, 1

It is best to avoid user-defined identifiers with the same names as built-in assembler 
reserved words.

Expressions
The built-in assembler evaluates all expressions as 32-bit integer values. It doesn’t 
support floating-point and string values, except string constants.

AH CL DX ESP mm4 SHL WORD

AL CS EAX FS mm5 SHR xmm0

AND CX EBP GS mm6 SI xmm1

AX DH EBX HIGH mm7 SMALL xmm2

BH DI ECX LARGE MOD SP xmm3

BL DL EDI LOW NOT SS xmm4

BP CL EDX mm0 OFFSET ST xmm5

BX DMTINDEX EIP mm1 OR TBYTE xmm6

BYTE DS ES mm2 PTR TYPE xmm7

CH DWORD ESI mm3 QWORD VMTOFFSET XOR
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Expressions are built from expression elements and operators, and each expression has 
an associated expression class and expression type.

Differences between Object Pascal and assembler expressions

The most important difference between Object Pascal expressions and built-in 
assembler expressions is that assembler expressions must resolve to a constant value- 
that is a value that can be computed at compile time. For example, given the 
declarations

const
X = 10;
Y = 20;

var
Z: Integer;

the following is a valid statement.

asm
MOV Z,X+Y

end;

Because both X and Y are constants, the expression X + Y is a convenient way of 
writing the constant 30, and the resulting instruction simply moves of the value 30 
into the variable Z. But if X and Y are variables—

var
  X, Y: Integer;

—the built-in assembler cannot compute the value of X + Y at compile time. In this 
case, to move the sum of X and Y into Z you would use

asm
MOV EAX,X
ADD EAX,Y
MOV Z,EAX

end;

In an Object Pascal expression, a variable reference denotes the contents of the 
variable. But in an assembler expression, a variable reference denotes the address of 
the variable. In Object Pascal the expression X + 4 (where X is a variable) means the 
contents of X plus 4, while to the built-in assembler it means the contents of the word 
at the address four bytes higher than the address of X. So, even though you’re 
allowed to write

asm
MOV EAX,X+4

end;

this code doesn’t load the value of X plus 4 into AX; instead, it loads the value of a 
word stored four bytes beyond X. The correct way to add 4 to the contents of X is

asm
MOV EAX,X
ADD EAX,4

end;
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Expression elements

The elements of an expression are constants, registers, and symbols.

Constants
The built-in assembler supports two types of constant: numeric constants and string 
constants.

Numeric constants
Numeric constants must be integers, and their values must be between –2,147,483,648 
and 4,294,967,295.

By default, numeric constants use decimal notation, but the built-in assembler also 
supports binary, octal, and hexadecimal. Binary notation is selected by writing a B 
after the number, octal notation by writing an O after the number, and hexadecimal 
notation by writing an H after the number or a $ before the number.

Numeric constants must start with one of the digits 0 through 9 or the $ character. 
When you write a hexadecimal constant using the H suffix, an extra zero is required 
in front of the number if the first significant digit is one of the digits A through F. For 
example, 0BAD4H and $BAD4 are hexadecimal constants, but BAD4H is an identifier 
because it starts with a letter.

String constants
String constants must be enclosed in single or double quotation marks. Two 
consecutive quotation marks of the same type as the enclosing quotation marks count 
as only one character. Here are some examples of string constants:

'Z'
'Delphi'
‘Linux’
"That's all folks"
'"That''s all folks," he said.'
'100'
'"'
"'"

String constants of any length are allowed in DB directives, and cause allocation of a 
sequence of bytes containing the ASCII values of the characters in the string. In all 
other cases, a string constant can be no longer than four characters and denotes a 
numeric value which can participate in an expression. The numeric value of a string 
constant is calculated as

Ord(Ch1) + Ord(Ch2) shl 8 + Ord(Ch3) shl 16 + Ord(Ch4) shl 24
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where Ch1 is the rightmost (last) character and Ch4 is the leftmost (first) character. If 
the string is shorter than four characters, the leftmost characters are assumed to be 
zero. The following table shows string constants and their numeric values.

Registers
The following reserved symbols denote CPU registers in the inline assembler:

When an operand consists solely of a register name, it is called a register operand. All 
registers can be used as register operands, and some registers can be used in other 
contexts.

The base registers (BX and BP) and the index registers (SI and DI) can be written 
within square brackets to indicate indexing. Valid base/index register combinations 
are [BX], [BP], [SI], [DI], [BX+SI], [BX+DI], [BP+SI], and [BP+DI]. You can also index 
with all the 32-bit registers—for example, [EAX+ECX], [ESP], and [ESP+EAX+5].

The segment registers (ES, CS, SS, DS, FS, and GS) are supported, but segments are 
normally not useful in 32-bit applications.

The symbol ST denotes the topmost register on the 8087 floating-point register stack. 
Each of the eight floating-point registers can be referred to using ST(X), where X is a 
constant between 0 and 7 indicating the distance from the top of the register stack.

Symbols
The built-in assembler allows you to access almost all Object Pascal identifiers in 
assembly language expressions, including constants, types, variables, procedures, 
and functions. In addition, the built-in assembler implements the special symbol 

Table 13.2 String examples and their values

String Value

'a' 00000061H

'ba' 00006261H

'cba' 00636261H

'dcba' 64636261H

'a ' 00006120H

' a' 20202061H

'a' * 2 000000E2H

'a'-'A' 00000020H

not 'a' FFFFFF9EH

Table 13.3 CPU registers

32-bit general purpose EAX  EBX  ECX  EDX 32-bit pointer or index ESP EBP ESI EDI

16-bit general purpose AX  BX  CX  DX 16-bit pointer or index SP  BP  SI  DI

8-bit low registers AL  BL  CL  DL 16-bit segment registers CS  DS  SS  ES

32-bit segment registers FS  GS

8-bit high registers AH  BH  CH  DH Coprocessor register stack ST
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@Result, which corresponds to the Result variable within the body of a function. For 
example, the function

function Sum(X, Y: Integer): Integer;
begin

Result := X + Y;
end;

could be written in assembly language as

function Sum(X, Y: Integer): Integer; stdcall;
begin

asm
MOV EAX,X
ADD EAX,Y
MOV @Result,EAX

end;
end;

The following symbols cannot be used in asm statements:

• Standard procedures and functions (for example, WriteLn and Chr).
• String, floating-point, and set constants (except when loading registers).
• Labels that aren’t declared in the current block.
• The @Result symbol outside of functions.

The following table summarizes the kinds of symbol that can be used in asm 
statements.

With optimizations disabled, local variables (variables declared in procedures and 
functions) are always allocated on the stack and accessed relative to EBP, and the 
value of a local variable symbol is its signed offset from EBP. The assembler 
automatically adds [EBP] in references to local variables. For example, given the 
declaration

var Count: Integer;

within a function or procedure, the instruction

MOV EAX,Count

assembles into MOV EAX,[EBP–4].

Table 13.4 Symbols recognized by the built-in assembler

Symbol Value Class Type

Label Address of label Memory reference Size of type

Constant Value of constant Immediate value 0

Type 0 Memory reference Size of type

Field Offset of field Memory Size of type

Variable Address of variable Memory reference Size of type

Procedure Address of procedure Memory reference Size of type

Function Address of function Memory reference Size of type

Unit 0 Immediate value 0

@Result Result variable offset Memory reference Size of type
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The built-in assembler treats var parameters as a 32-bit pointers, and the size of a var 
parameter is always 4. The syntax for accessing a var parameter is different from that 
for accessing a value parameter. To access the contents of a var parameter, you must 
first load the 32-bit pointer and then access the location it points to. For example,

function Sum(var X, Y: Integer): Integer; stdcall;
begin

asm
MOV EAX,X
MOV EAX,[EAX]
MOV EDX,Y
ADD EAX,[EDX]
MOV @Result,EAX

end;
end;

Identifiers can be qualified within asm statements. For example, given the 
declarations

type
TPoint = record

X, Y: Integer;
end;
TRect = record

A, B: TPoint;
end;

var
P: TPoint;
R: TRect;

the following constructions can be used in an asm statement to access fields.

MOV EAX,P.X
MOV EDX,P.Y
MOV ECX,R.A.X
MOV EBX,R.B.Y

A type identifier can be used to construct variables on the fly. Each of the following 
instructions generates the same machine code, which loads the contents of [EDX] into 
EAX.

MOV EAX,(TRect PTR [EDX]).B.X
MOV EAX,TRect([EDX]).B.X
MOV EAX,TRect[EDX].B.X
MOV EAX,[EDX].TRect.B.X

Expression classes

The built-in assembler divides expressions into three classes: registers, memory 
references, and immediate values.

An expression that consists solely of a register name is a register expression. 
Examples of register expressions are AX, CL, DI, and ES. Used as operands, register 
expressions direct the assembler to generate instructions that operate on the CPU 
registers.
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Expressions that denote memory locations are memory references. Object Pascal’s 
labels, variables, typed constants, procedures, and functions belong to this category.

Expressions that aren’t registers and aren’t associated with memory locations are 
immediate values. This group includes Object Pascal’s untyped constants and type 
identifiers.

Immediate values and memory references cause different code to be generated when 
used as operands. For example,

const
Start = 10;

var
Count: Integer;
ƒ

asm
MOV EAX,Start { MOV EAX,xxxx }
MOV EBX,Count { MOV EBX,[xxxx] }
MOV ECX,[Start] { MOV ECX,[xxxx] }
MOV EDX,OFFSET Count { MOV EDX,xxxx }

end;

Because Start is an immediate value, the first MOV is assembled into a move 
immediate instruction. The second MOV, however, is translated into a move memory 
instruction, as Count is a memory reference. In the third MOV, the brackets convert 
Start into a memory reference (in this case, the word at offset 10 in the data segment). 
In the fourth MOV, the OFFSET operator converts Count into an immediate value 
(the offset of Count in the data segment).

The brackets and OFFSET operator complement each other. The following asm 
statement produces identical machine code to the first two lines of the previous asm 
statement.

asm
MOV EAX,OFFSET [Start]
MOV EBX,[OFFSET Count]

end;

Memory references and immediate values are further classified as either relocatable or 
absolute. Relocation is the process by which the linker assigns absolute addresses to 
symbols. A relocatable expression denotes a value that requires relocation at link 
time, while an absolute expression denotes a value that requires no such relocation. 
Typically, expressions that refer to labels, variables, procedures, or functions are 
relocatable, since the final address of these symbols is unknown at compile time. 
Expressions that operate solely on constants are absolute.

The built-in assembler allows you to carry out any operation on an absolute value, 
but it restricts operations on relocatable values to addition and subtraction of 
constants.

Expression types

Every built-in assembler expression has a type—or, more correctly, a size, because 
the assembler regards the type of an expression simply as the size of its memory 
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location. For example, the type of an Integer variable is four, because it occupies 4 
bytes. The built-in assembler performs type checking whenever possible, so in the 
instructions

var
QuitFlag: Boolean;
OutBufPtr: Word;
ƒ

asm
MOV AL,QuitFlag
MOV BX,OutBufPtr

end;

the assembler checks that the size of QuitFlag is one (a byte), and that the size of 
OutBufPtr is two (a word). The instruction

MOV DL,OutBufPtr

produces an error because DL is a byte-sized register and OutBufPtr is a word. The 
type of a memory reference can be changed through a typecast; these are correct 
ways of writing the previous instruction:

MOV DL,BYTE PTR OutBufPtr
MOV DL,Byte(OutBufPtr)
MOV DL,OutBufPtr.Byte

These MOV instructions all refer to the first (least significant) byte of the OutBufPtr 
variable.

In some cases, a memory reference is untyped. One example is an immediate value 
(Buffer) enclosed in square brackets:

procedure Example(var Buffer);
asm

MOV AL, [Buffer] 
MOV CX, [Buffer] 
MOV EDX, [Buffer] 

The built-in assembler permits these instructions, because the expression [Buffer] has 
no type—it just means “the contents of the location indicated by Buffer,” and the type 
can be determined from the first operand (byte for AL, word for CX, and double-
word for EDX). 

In cases where the type can’t be determined from another operand, the built-in 
assembler requires an explicit typecast. For example,

INC     BYTE PTR [ECX]
IMUL    WORD PTR [EDX]

The following table summarizes the predefined type symbols that the built-in 
assembler provides in addition to any currently declared Object Pascal types.

Table 13.5 Predefined type symbols

Symbol Type

BYTE 1

WORD 2

DWORD 4



I n l i n e  a s s e m b l y  c o d e 13-15

E x p r e s s i o n s

Expression operators

The built-in assembler provides a variety of operators. Precedence rules are different 
from Object Pascal; for example, in an asm statement, AND has lower precedence 
than the addition and subtraction operators. The following table lists the built-in 
assembler’s expression operators in decreasing order of precedence.

The following table defines the built-in assembler’s expression operators.

QWORD 8

TBYTE 10

Table 13.6 Precedence of built-in assembler expression operators

Operators Remarks Precedence

& highest

(), [], ., HIGH, LOW

+, – unary + and –

:

OFFSET, TYPE, PTR, *, /, MOD, SHL, 
SHR, +, – binary + and –

NOT, AND, OR, XOR lowest

Table 13.7 Definitions of built-in assembler expression operators

Operator Description

& Identifier override. The identifier immediately following the ampersand is treated as 
a user-defined symbol, even if the spelling is the same as a built-in assembler 
reserved symbol.

 (...) Subexpression. Expressions within parentheses are evaluated completely prior to 
being treated as a single expression element. Another expression can precede the 
expression within the parentheses; the result in this case is the sum of the values of 
the two expressions, with the type of the first expression.

 [...] Memory reference. The expression within brackets is evaluated completely prior to 
being treated as a single expression element. Another expression can precede the 
expression within the brackets; the result in this case is the sum of the values of the 
two expressions, with the type of the first expression. The result is always a memory 
reference.

. Structure member selector. The result is the sum of the expression before the period 
and the expression after the period, with the type of the expression after the period. 
Symbols belonging to the scope identified by the expression before the period can be 
accessed in the expression after the period.

HIGH Returns the high-order 8 bits of the word-sized expression following the operator. 
The expression must be an absolute immediate value.

LOW Returns the low-order 8 bits of the word-sized expression following the operator. The 
expression must be an absolute immediate value.

Table 13.5 Predefined type symbols (continued)

Symbol Type
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Assembly procedures and functions
You can write complete procedures and functions using inline assembly language 
code, without including a begin...end statement. For example,

+ Unary plus. Returns the expression following the plus with no changes. The 
expression must be an absolute immediate value.

– Unary minus. Returns the negated value of the expression following the minus. The 
expression must be an absolute immediate value.

+ Addition. The expressions can be immediate values or memory references, but only 
one of the expressions can be a relocatable value. If one of the expressions is a 
relocatable value, the result is also a relocatable value. If either of the expressions is a 
memory reference, the result is also a memory reference.

– Subtraction. The first expression can have any class, but the second expression must 
be an absolute immediate value. The result has the same class as the first expression.

: Segment override. Instructs the assembler that the expression after the colon belongs 
to the segment given by the segment register name (CS, DS, SS, FS, GS, or ES) before 
the colon. The result is a memory reference with the value of the expression after the 
colon. When a segment override is used in an instruction operand, the instruction is 
prefixed with an appropriate segment-override prefix instruction to ensure that the 
indicated segment is selected.

OFFSET Returns the offset part (double word) of the expression following the operator. The 
result is an immediate value.

TYPE Returns the type (size in bytes) of the expression following the operator. The type of 
an immediate value is 0.

PTR Typecast operator. The result is a memory reference with the value of the expression 
following the operator and the type of the expression in front of the operator.

* Multiplication. Both expressions must be absolute immediate values, and the result 
is an absolute immediate value.

/ Integer division. Both expressions must be absolute immediate values, and the result 
is an absolute immediate value.

MOD Remainder after integer division. Both expressions must be absolute immediate 
values, and the result is an absolute immediate value.

SHL Logical shift left. Both expressions must be absolute immediate values, and the result 
is an absolute immediate value.

SHR Logical shift right. Both expressions must be absolute immediate values, and the 
result is an absolute immediate value.

NOT Bitwise negation. The expression must be an absolute immediate value, and the 
result is an absolute immediate value.

AND Bitwise AND. Both expressions must be absolute immediate values, and the result is 
an absolute immediate value.

OR Bitwise OR. Both expressions must be absolute immediate values, and the result is an 
absolute immediate value.

XOR Bitwise exclusive OR. Both expressions must be absolute immediate values, and the 
result is an absolute immediate value.

Table 13.7 Definitions of built-in assembler expression operators (continued)

Operator Description



I n l i n e  a s s e m b l y  c o d e 13-17

function LongMul(X, Y: Integer): Longint;
asm

MOV EAX,X
IMUL Y

end;

The compiler performs several optimizations on these routines:

• No code is generated to copy value parameters into local variables. This affects all 
string-type value parameters and other value parameters whose size isn’t 1, 2, or 4 
bytes. Within the routine, such parameters must be treated as if they were var 
parameters.

• Unless a function returns a string, variant, or interface reference, the compiler 
doesn’t allocate a function result variable; a reference to the @Result symbol is an 
error. For strings, variants, and interfaces, the caller always allocates an @Result 
pointer.

• The compiler only generates stack frames for nested routines, for routines that 
have local parameters, or for routines that have parameters on the stack.

• The automatically generated entry and exit code for the routine looks like this:

PUSH EBP ;Present if Locals <> 0 or Params <> 0
MOV EBP,ESP ;Present if Locals <> 0 or Params <> 0
SUB ESP,Locals ;Present if Locals <> 0
ƒ

MOV ESP,EBP ;Present if Locals <> 0
POP EBP ;Present if Locals <> 0 or Params <> 0
RET Params ;Always present

If locals include variants, long strings, or interfaces, they are initialized to zero but 
not finalized.

• Locals is the size of the local variables and Params is the size of the parameters. If 
both Locals and Params are zero, there is no entry code, and the exit code consists 
simply of a RET instruction.

Assembly language functions return their results as follows.

• Ordinal values are returned in AL (8-bit values), AX (16-bit values), or EAX (32-bit 
values).

• Real values are returned in ST(0) on the coprocessor’s register stack. (Currency 
values are scaled by 10000.)

• Pointers, including long strings, are returned in EAX.

• Short strings and variants are returned in the temporary location pointed to by 
@Result.
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A
Appendix AObject Pascal grammar

Goal -> (Program | Package | Library | Unit)

Program -> [PROGRAM Ident ['(' IdentList ')'] ';']
ProgramBlock '.'

Unit -> UNIT Ident [PortabilityDirective] ';'
InterfaceSection
ImplementationSection
InitSection '.'

Package -> PACKAGE Ident ';'
[RequiresClause]
[ContainsClause]
END '.'

Library -> LIBRARY Ident ';'
ProgramBlock '.'

ProgramBlock -> [UsesClause]
Block

UsesClause -> USES IdentList ';'

PortabilityDirective -> platform
-> deprecated
-> library

InterfaceSection -> INTERFACE
[UsesClause]
[InterfaceDecl]...

InterfaceDecl -> ConstSection
-> TypeSection
-> VarSection
-> ExportedHeading

ExportedHeading -> ProcedureHeading ';' [Directive]
-> FunctionHeading ';' [Directive]
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ImplementationSection -> IMPLEMENTATION
[UsesClause]
[DeclSection]...
[ExportsStmt]...

Block -> [DeclSection]
[ExportsStmt]...
CompoundStmt
[ExportsStmt]...

ExportsStmt -> EXPORTS ExportsItem [, ExportsItem]...

ExportsItem -> Ident [NAME|INDEX “‘” ConstExpr “‘”]
[INDEX|NAME “‘” ConstExpr “‘”]

DeclSection -> LabelDeclSection
-> ConstSection
-> TypeSection
-> VarSection
-> ProcedureDeclSection

LabelDeclSection -> LABEL LabelId

ConstSection -> CONST (ConstantDecl ';')...

ConstantDecl -> Ident '=' ConstExpr [PortabilityDirective]
-> Ident ':' TypeId '=' TypedConstant [PortabilityDirective]

TypeSection -> TYPE (TypeDecl ';') 

TypeDecl -> Ident '=' [TYPE] Type [PortabilityDirective]
-> Ident '=' [TYPE] RestrictedType [PortabilityDirective]

TypedConstant -> (ConstExpr | ArrayConstant | RecordConstant)

ArrayConstant -> '(' TypedConstant ',' ')'

RecordConstant -> '(' RecordFieldConstant ';'... ')'

RecordFieldConstant -> Ident ':' TypedConstant

Type -> TypeId
-> SimpleType
-> StrucType
-> PointerType
-> StringType 
-> ProcedureType
-> VariantType
-> ClassRefType

RestrictedType -> ObjectType
-> ClassType
-> InterfaceType

ClassRefType -> CLASS OF TypeId

SimpleType -> (OrdinalType | RealType)
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RealType -> REAL48
-> REAL
-> SINGLE
-> DOUBLE
-> EXTENDED
-> CURRENCY
-> COMP

OrdinalType -> (SubrangeType | EnumeratedType | OrdIdent)

OrdIdent -> SHORTINT
-> SMALLINT
-> INTEGER
-> BYTE
-> LONGINT
-> INT64
-> WORD
-> BOOLEAN
-> CHAR
-> WIDECHAR
-> LONGWORD
-> PCHAR

VariantType -> VARIANT
-> OLEVARIANT

SubrangeType -> ConstExpr '..' ConstExpr

EnumeratedType -> '(' EnumeratedTypeElement ','... ')'

EnumeratedTypeElement -> Ident [ '=' ConstExpr ]

StringType -> STRING
-> ANSISTRING
-> WIDESTRING
-> STRING '[' ConstExpr ']'

StrucType -> [PACKED] (ArrayType [PACKED]| SetType | FileType | RecType [PACKED])

ArrayType -> ARRAY ['[' OrdinalType ','... ']'] OF Type [PortabilityDirective]

RecType -> RECORD [FieldList] END [PortabilityDirective] 

FieldList -> FieldDecl ';'... [VariantSection] [';']

FieldDecl -> IdentList ':' Type [PortabilityDirective]

VariantSection -> CASE [Ident ':'] TypeId OF RecVariant ';'...

RecVariant -> ConstExpr ','... ':' '(' [FieldList] ')'

SetType -> SET OF OrdinalType [PortabilityDirective]

FileType -> FILE OF TypeId [PortabilityDirective]

PointerType -> '^' TypeId [PortabilityDirective]

ProcedureType -> (ProcedureHeading | FunctionHeading) [OF OBJECT]
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VarSection -> VAR (VarDecl ';')...

VarDecl 
On Windows -> IdentList ':' Type [(ABSOLUTE (Ident | ConstExpr)) | '=' ConstExpr] 

[PortabilityDirective]
On Linux -> IdentList ':' Type [ABSOLUTE (Ident) | '=' ConstExpr] [PortabilityDirective]

Expression -> SimpleExpression [RelOp SimpleExpression]...

SimpleExpression -> ['+' | '-'] Term [AddOp Term]...

Term -> Factor [MulOp Factor]...

Factor -> Designator ['(' ExprList ')']
-> '@' Designator
-> Number
-> String
-> NIL
-> '(' Expression ')'
-> NOT Factor
-> SetConstructor
-> TypeId '(' Expression ')'

RelOp -> '>'
-> '<'
-> '<='
-> '>='
-> '<>'
-> IN
-> IS
-> AS

AddOp -> '+'
-> '-'
-> OR
-> XOR

MulOp -> '*'
-> '/'
-> DIV
-> MOD
-> AND
-> SHL
-> SHR

Designator -> QualId ['.' Ident | '[' ExprList ']' | '^']...

SetConstructor -> '[' [SetElement ','...] ']'

SetElement -> Expression ['..' Expression]

ExprList -> Expression ','...

Statement -> [LabelId ':'] [SimpleStatement | StructStmt]

StmtList -> Statement ';' 

SimpleStatement -> Designator ['(' [ExprList] ')']
-> Designator ':=' Expression
-> INHERITED
-> GOTO LabelId
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StructStmt -> CompoundStmt
-> ConditionalStmt
-> LoopStmt
-> WithStmt
-> TryExceptStmt
-> TryFinallyStmt
-> RaiseStmt
-> AssemblerStmt

CompoundStmt -> BEGIN StmtList END

ConditionalStmt -> IfStmt
-> CaseStmt

IfStmt -> IF Expression THEN Statement [ELSE Statement]

CaseStmt -> CASE Expression OF CaseSelector ';'... [ELSE StmtList] [';'] END

CaseSelector -> CaseLabel ','... ':' Statement

CaseLabel -> ConstExpr ['..' ConstExpr]

LoopStmt -> RepeatStmt
-> WhileStmt
-> ForStmt

RepeatStmt -> REPEAT Statement UNTIL Expression

WhileStmt -> WHILE Expression DO Statement

ForStmt -> FOR QualId ':=' Expression (TO | DOWNTO) Expression DO Statement

WithStmt -> WITH IdentList DO Statement

TryExceptStmt -> TRY
Statement...

EXCEPT
ExceptionBlock

END

ExceptionBlock -> [ON [Ident ‘:’] TypeID DO Statement]...
[ELSE Statement...]

TryFinallyStmt -> TRY
Statement

FINALLY
Statement

END

RaiseStmt -> RAISE [object] [AT address]

AssemblerStatement -> ASM
-> <assemblylanguage>
-> END

ProcedureDeclSection -> ProcedureDecl
-> FunctionDecl

ProcedureDecl -> ProcedureHeading ';' [Directive] [PortabilityDirective]
Block ';'

FunctionDecl -> FunctionHeading ';' [Directive] [PortabilityDirective]
Block ';'
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FunctionHeading -> FUNCTION Ident [FormalParameters] ':' (SimpleType | STRING)

ProcedureHeading -> PROCEDURE Ident [FormalParameters]

FormalParameters -> '(' [FormalParm ';'...] ')'

FormalParm -> [VAR | CONST | OUT] Parameter

Parameter -> IdentList [':' ([ARRAY OF] SimpleType | STRING | FILE)]
-> Ident ':' SimpleType '=' ConstExpr

Directive -> CDECL
-> REGISTER
-> DYNAMIC
-> VIRTUAL
-> EXPORT
-> EXTERNAL
-> NEAR
-> FAR
-> FORWARD
-> MESSAGE ConstExpr
-> OVERRIDE
-> OVERLOAD
-> PASCAL
-> REINTRODUCE
-> SAFECALL
-> STDCALL
-> VARARGS
-> LOCAL
-> ABSTRACT

ObjectType -> OBJECT [ObjHeritage] [ObjFieldList] [MethodList] END

ObjHeritage -> '(' QualId ')'

MethodList -> (MethodHeading [';' VIRTUAL]) ';'...

MethodHeading -> ProcedureHeading
-> FunctionHeading
-> ConstructorHeading
-> DestructorHeading

ConstructorHeading -> CONSTRUCTOR Ident [FormalParameters]

DestructorHeading -> DESTRUCTOR Ident [FormalParameters]

ObjFieldList -> (IdentList ':' Type) ';' 

InitSection -> INITIALIZATION StmtList [FINALIZATION StmtList] END
-> BEGIN StmtList END
-> END

ClassType -> CLASS [ClassHeritage]
[ClassVisibility]
[ClassFieldList]
[ClassMethodList]
[ClassPropertyList]
END

ClassHeritage -> '(' IdentList ')'

ClassVisibility -> [PUBLIC | PROTECTED | PRIVATE | PUBLISHED]
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ClassFieldList -> (ClassVisibility ObjFieldList) ';'...

ClassMethodList -> (ClassVisibility MethodList) ';'...

ClassPropertyList -> (ClassVisibility PropertyList ';')...

PropertyList -> PROPERTY Ident [PropertyInterface] [PropertySpecifiers] 
[PortabilityDirective]

PropertyInterface -> [PropertyParameterList] ':' Ident

PropertyParameterList -> '[' (IdentList ':' TypeId) ';'... ']'

PropertySpecifiers -> [INDEX ConstExpr]
[READ Ident]
[WRITE Ident]
[STORED (Ident | Constant)]
[(DEFAULT ConstExpr) | NODEFAULT]
[IMPLEMENTS TypeId]

InterfaceType -> INTERFACE [InterfaceHeritage]
[ClassMethodList]
[ClassPropertyList]
...
END

InterfaceHeritage -> '(' IdentList ')'

RequiresClause -> REQUIRES IdentList... ';'

ContainsClause -> CONTAINS IdentList... ';'

IdentList -> Ident ','...

QualId -> [UnitId '.'] Ident

TypeId -> [UnitId '.'] <type-identifier>

Ident -> <identifier>

ConstExpr -> <constant-expression>

UnitId -> <unit-identifier>

LabelId -> <label-identifier>

Number -> <number>

String -> <string>
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- 4-4, 4-6, 4-9, 4-10
" 13-9
# 4-4
$ 4-4, 4-5
(*, *) 4-5
(, ) 4-2, 4-13, 4-14, 5-6, 5-43, 6-2, 

6-3, 6-11, 7-2, 10-1
* 4-2, 4-6, 4-10
+ 4-4, 4-6, 4-9, 4-10
, 3-6, 4-24, 5-6, 5-21, 5-23, 6-11, 

7-17, 9-5, 9-9, 10-7, 13-2
. 3-2, 4-2, 4-14, 5-27, 9-9, 10-5
/ 4-2, 4-6
// 4-5
: 4-2, 4-17, 4-24, 5-21, 5-23, 5-38, 

5-43, 6-3, 6-11, 7-17, 7-19, 7-29, 
13-2

:= 4-17, 4-26
named parameters 10-12

; 3-2, 3-6, 4-16, 4-17, 4-20, 4-25, 
5-21, 5-23, 5-38, 6-2, 6-3, 6-11, 
7-2, 7-6, 9-5, 9-9, 10-1, 10-4, 
10-10

before ’else’ 4-23
< 4-2, 4-9, 4-11
<= 4-9, 4-10, 4-11
<> 4-9, 4-10, 4-11
= 4-2, 4-9, 4-10, 4-11, 4-17, 5-37, 

5-38, 5-40, 5-43, 6-11, 6-18, 10-5
> 4-2, 4-9, 4-11
>= 4-9, 4-10, 4-11
@ 4-6, 4-12, 5-26, 5-30, 5-44, 7-17
@@ 5-30
@Result 13-10, 13-17
[, ] 4-14, 5-11, 5-12, 5-17, 5-31, 

6-15, 6-20, 7-17, 7-19, 7-20, 10-1, 
10-10

^ 4-6, 4-9, 5-19, 5-27
and variants 5-33
pointer overview 5-26

_ 4-2
{, } 4-5, 10-1, 10-10
’ 4-4, 9-9, 10-1, 10-10

A
$A directive 11-8
absolute (directive) 5-39
absolute addresses 5-39

absolute expressions 
(assembler) 13-13

abstract methods 7-12
access specifiers 7-1, 7-17

array properties 7-19
Automation 7-6
calling convention 6-5, 7-18
index specifiers and 7-21
overloading 7-13, 7-18
overriding 7-22

actual parameters 6-19
Add method (TCollection) 7-9
addition 4-6

pointers 4-9
Addr function 5-27
_AddRef method 10-2, 10-5, 

10-9
address operator 4-12, 5-26, 

5-30, 5-44
properties and 7-17

alignment (data) 5-17, 11-8
See also internal data formats

AllocMemCount variable 11-2
AllocMemSize variable 11-2
alphanumeric characters 4-1, 

4-2
ampersand See Symbols
ancestors 7-3
and 4-7, 4-8
anonymous values (enumerated 

types) 5-8, 7-5
ANSI characters 5-5, 5-12, 5-13
AnsiChar type 5-5, 5-11, 5-13, 

5-27, 11-3
AnsiString type 5-10, 5-12, 5-13, 

5-15, 5-28
See also long strings
memory management 11-6
variant arrays and 5-34

Append procedure 8-2, 8-4, 8-5, 
8-6

application partitioning 9-8
Application variable 2-5, 3-3
arithmetic operators 4-6, 5-4
array properties 7-5, 7-19

default 7-20
in dispatch interfaces 10-11
storage specifiers and 7-22

arrays 5-3, 5-18 to 5-21
’array of const’ 6-17
accessing with 

PByteArray 5-28

accessing with 
PWordArray 5-28

assignments and 5-21
character 4-5, 5-13, 5-14, 

5-17, 5-18
character arrays and string 

constants 4-5, 5-14, 5-43
constant 5-43
dynamic 5-19, 5-40, 6-16, 

11-7
indexes 4-14
multidimensional 5-18, 5-20
open array 

constructors 6-17, 6-20
parameters 6-12, 6-15
static 5-18, 11-7
variants and 5-31, 5-34

as 4-12, 7-24, 7-25, 10-10
ASCII 4-1, 4-4, 4-5, 5-13
asm statements 13-1, 13-16
assembler (directive) 6-6, 13-1
assembly language

assembler routines 13-16
built-in assembler 13-1 to 

13-17
external routines 6-7
Object Pascal and 13-5, 13-7, 

13-8, 13-10, 13-13, 13-15
Assert procedure 7-27
assertions 7-27
Assign procedure

custom 8-4
Assigned function 5-31, 10-9
AssignFile procedure 8-2, 8-4, 

8-6
assignment statements 4-17

typecasts 4-15
assignment-compatibility 5-36, 

7-3, 10-9
asterisk See Symbols
at (reserved word) 7-27
at-sign See @, address operator
automatable types 7-6, 10-11
automated class members 7-4, 

7-6
Automation 7-6, 10-10 to 10-13

See also COM
dual interfaces 10-13
method calls 10-12
variants and 11-12

Index
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B
$B directive 4-8
base types 5-8, 5-17, 5-18, 5-19
begin (reserved word) 3-2, 4-20, 

6-2, 6-3
binary operators 4-6
binding

fields 7-7
methods 7-10

bitwise operators,not 4-8
blanks 4-1
BlockRead procedure 8-4
blocks 4-27 to 4-28

function 3-4, 6-1, 6-3
library 9-5
outer and inner 4-29
procedure 3-4, 6-1, 6-2
program 3-1, 3-2
scope 4-27 to 4-29
try...except 7-28, 7-30
try...finally 7-31

BlockWrite procedure 8-4
body (routine) 6-1
boldface 1-2
Boolean operators 4-7

complete vs. partial 
evaluation 4-7

Boolean type 5-6, 11-3
Boolean types 5-5, 11-3
BORLANDMM.DLL 9-8
braces See Symbols
brackets See Symbols
Break procedure 4-25

exception handlers 7-29
in try...finally block 7-32

BSTR type (COM) 5-13
built-in assembler 13-1 to 13-17
built-in types 5-1
by reference (parameters) 6-12, 

6-13, 10-12, 12-1
by value (parameters) 6-12, 

10-12, 12-1
Byte type 5-4, 11-3

assembler 13-14
ByteBool type 5-6, 11-3

C
C++ 6-6, 10-1, 11-11
calling conventions 5-29, 6-4, 

12-1
access specifiers 6-5, 7-18
interfaces 10-3, 10-7
methods 12-3
shared libraries 9-4

varargs directive 6-7
calling routines 9-1
Cardinal type 5-3
caret See Symbols
carriage-return 4-1, 4-5
case (reserved word) 4-24, 5-23
case statements 4-24
case-sensitivity 4-1, 4-2, 6-8

unit names and files 4-2
-cc compiler switch 8-3
cdecl (calling convention) 6-4, 

12-2
constructors and 

destructors 12-4
Self 12-4
varargs 6-7

Char type 5-5, 5-13, 5-27, 11-3
character operators 4-9
character sets

ANSI 5-5, 5-12, 5-13
extended 5-13
multibyte (MBCS) 5-13
Pascal 4-1, 4-2, 4-4
single-byte (SBCS) 5-13

character strings 4-1, 4-4, 5-45
characters

pointers 5-27
string literals as 4-5, 5-5
types 5-5, 11-3
wide 5-13, 11-3

checked typecasts
interfaces 10-10
objects 7-25

Chr function 5-5
circular references

packages 9-10
units 3-7 to 3-9

circumflex See Symbols
classes 7-1 to 7-32

class methods 7-1, 7-25
class references 7-23
class types 7-1, 7-2
comparison 4-11
compatibility 7-3, 10-9
declaring class types 7-2, 7-4, 

7-6, 7-7, 7-8, 7-17, 10-5
files and 5-25
memory 11-10
metaclasses 7-23
operators 4-12, 7-24
scope 4-29
variants and 5-31

Classes unit 7-9, 7-23
ClassParent method 7-24
class-reference types 7-23

comparison 4-11
constructors and 7-24
memory 11-11
variants and 5-31

ClassType method 7-24
clients 3-4
Close function 8-4, 8-6
CloseFile function 8-5
CloseFile procedure 8-6
CLX 1-2
CmdLine variable 9-7
colon See Symbols
COM 10-4

See also Automation
interfaces 10-2, 10-10 to 

10-13
out parameters 6-14
variants and 5-31, 5-33, 11-11

COM error handling 6-5
comma See Symbols
comments 4-1, 4-5
ComObj unit 7-6, 10-11
Comp type 5-9, 5-10, 11-5
comparison

classes 4-11
class-reference types 4-11
dynamic arrays 5-20
integer types 4-11
objects 4-11
packed strings 4-11
PChar type 4-11
real types 4-11
relational operators 4-11
strings 4-11, 5-11

compiler 2-2, 2-3, 2-5, 3-1
command-line 2-3 to 2-5
directives 3-2, 4-5
packages 9-11

compile-time binding See static 
methods

complete evaluation 4-7
components, of classes See 

members
compound statements 4-20
concatenation (strings) 4-9
conditional statements 4-20
conjunction 4-7
console applications 2-3, 8-3
const (reserved word) 5-40, 

5-43, 6-11, 6-12, 6-13, 6-17, 12-1
constant expression

array constants 5-43
case statements 4-24
constant declarations 5-40, 

5-43
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default paramters 6-18
defined 5-41
enumerated types 5-7
initializing variables 5-38
subrange types 5-8, 5-9
type 5-41, 6-8

constant parameters 6-12, 6-13, 
6-19, 12-1

open array constructors 6-20
constants 4-6, 5-40

array 5-43
assembler 13-9
declared 5-40 to 5-45
numeric See numerals
pointer 5-44
procedural 5-44
record 5-43
true 5-40
type compatibility 5-40
typed 5-42

constructors 7-1, 7-9, 7-13
calling conventions 12-4
class references and 7-24
exceptions 7-28, 7-32

contains clause 9-9, 9-10
context-sensitive Help (error-

handling) 7-32
Continue procedure 4-25

exception handlers 7-29
in try...finally block 7-32

control (program) 6-19, 12-1 to 
12-6

control characters 4-1, 4-5
control loops 4-20, 4-25
control strings 4-4
conversion

See also typecasts
variants 5-31, 5-32 to 5-33, 

5-34
Copy function 5-20
copy-on-write semantics 5-12
CORBA

interfaces 10-3
out parameters 6-14

CPU See registers
Create method 7-13
Currency type 5-9, 5-10, 5-28, 

11-5

D
data alignment 5-17, 11-8
data formats, internal 11-2 to 

11-12
data types See types
.dcp files 9-11, 2-3

.dcu files 2-3, 3-7, 9-10, 9-11
Dec procedure 5-3, 5-4
declarations 4-1, 4-16, 4-28

class 7-2, 7-7, 7-8, 7-17, 10-5
constant 5-40, 5-43
defining 6-6, 7-6, 7-8, 10-4
field 7-7
forward 3-4, 6-6, 7-6, 10-4
function 6-1, 6-3
implementation 7-8
interface 3-4
local 6-10
method 7-8
package 9-9
procedure 6-1, 6-2
property 7-17, 7-19
type 5-37
variable 5-38

declared types 5-1
decrementing ordinals 5-3, 5-4, 

5-5
default (directive) 7-20, 10-11
default parameters 6-11, 6-18 to 

6-19
Automation objects 10-12
forward and interface 

declarations 6-19
overloading and 6-10, 6-19
procedural types 6-18

default properties 7-20
interfaces 10-2

default property (COM 
object) 5-33

default specifier 7-6, 7-17, 7-21
DefaultHandler method 7-16, 

7-17
defining declarations 6-6, 7-6, 

7-8, 10-4
DefWindowProc function 7-16
delegated interface 10-7
delegation (interface 

implementation) 10-6
$DENYPACKAGEUNIT 

directive 9-12
dependency

units 3-7 to 3-9
deprecated (directive) 4-17
dereference operator 4-9, 5-19

pointer overview 5-26
variants and 5-33

descendants 7-3, 7-5
$DESIGNONLY directive 9-12
design-time packages 9-8
.desk files 2-2
desktop settings files 2-2

Destroy method 7-13, 7-15, 7-29
destructors 7-1, 7-13, 7-14

calling conventions 12-4
device drivers, text-file 8-4
device functions 8-4, 8-5
.dfm files 2-2, 2-7, 7-5
difference (sets) 4-10
directives 4-1, 4-3

See also reserved words
assembler 13-3
compiler 3-2, 4-5
list 4-3
order 7-8

directory paths
in uses clause 3-6

disjunction 4-7
bitwise 4-8

dispatch interface types 10-10
Dispatch method 7-16
dispatching messages 7-16
dispatching method calls 7-11
dispid (directive) 7-6, 10-2, 

10-11
dispinterface 10-10
dispinterface (reserved 

word) 10-2
Dispose procedure 5-19, 5-39, 

7-4, 9-8, 11-1, 11-2
div 4-6
division 4-6
dlclose 9-2
.DLL files 6-7, 9-1
DLL_PROCESS_DETACH 9-7
DLL_THREAD_ATTACH 9-7
DLL_THREAD_DETACH 9-7
DLLProc variable 9-7
DLLs 9-1 to 9-8

calling routines in 6-7
dynamic arrays in 9-8
dynamic variables in 9-8
exceptions 9-7
global variables 9-6
loading dynamically 9-2
loading statically 9-1
long strings in 9-8
multithreading 9-7
variables 9-1
writing 9-3

dlopen 9-2
dlsym 9-2
DMTINDEX 13-6
do (reserved word) 4-21, 4-26, 

7-29
.dof files 2-2
dollar See Symbols
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Double type 5-9, 11-5
downto (reserved word) 4-26
.dpk files 2-2, 9-11
.dpr files 2-2, 3-1, 3-6
.dpu files 2-3, 3-7, 9-10, 9-11
.drc files 2-3
.dsk files 2-2
dual interfaces 10-3, 10-13

methods 6-5
DWORD type (assembler) 13-14
dynamic arrays 5-19, 11-7

assigning to 5-19
comparison 5-20
files and 5-25
freeing 5-40
in dynamically loadable 

libraries 9-8
memory management 11-2
multidimensional 5-20
open array parameters 

and 6-16
records and 5-23
truncating 5-20
variants and 5-31

dynamic methods 7-10
dynamic variables 5-39

and pointer constants 5-45
in dynamically loadable 

libraries 9-8
dynamically loadable 

libraries 6-7, 9-1 to 9-12
dynamic arrays 9-8
dynamic variables 9-8
exceptions 9-7
global variables 9-6
loading statically 9-1
long strings 9-8
variables 9-1
writing 9-3

dynamic-link libraries See DLLs

E
E (in numerals) 4-4
EAssertionFailed 7-27
else (reserved word) 4-22, 4-24, 

7-28
empty set 5-17
end (reserved word) 3-2, 4-20, 

4-24, 5-21, 5-23, 6-2, 6-3, 7-2, 
7-28, 7-32, 9-9, 10-1, 10-10, 13-1

end-of-line character 4-1, 8-3
enumerated types 5-6 to 5-8, 

11-3
anonymous values 5-8, 7-5
publishing 7-5

Eof function 8-5
Eoln function 8-5
equality operator 4-11
error handling See exceptions
ErrorAddr variable 12-5
EStackOverflow exception 11-2
EVariantError exception 5-33
event handlers 2-7, 7-5
events 2-7, 7-5
example programs 2-3 to 2-5
except (reserved word) 7-28
ExceptAddr function 7-32
Exception class 7-27, 7-32
exception firewalls 6-5
exception handlers 7-26, 7-29

identifiers in 7-30
ExceptionInformation 

variable 9-8
exceptions 4-20, 7-13, 7-15, 7-26 

to 7-32
constructors 7-28, 7-32
declaring 7-27
destroying 7-28, 7-29
dynamically loadable 

libraries 9-6, 9-7
file I/O 8-3
handling 7-28, 7-30, 7-32
in initialization section 7-28
nested 7-31
propagation 7-29, 7-31, 7-32
raising 7-27
re-raising 7-30
standard exceptions 7-32
standard routines 7-32

ExceptObject function 7-32
executable files 2-3
Exit procedure 6-1

exception handlers 7-29
in try...finally block 7-32

exit procedures 9-6, 12-4 to 12-6
packages and 12-4

ExitCode variable 9-6, 12-5
ExitProc variable 9-6, 12-4, 12-5
export (directive) 6-5
exports clause 4-28, 9-5

overloaded routines 9-5
expressions 4-1, 4-5

assembler 13-7 to 13-16
extended syntax 4-5, 4-18, 5-14, 

6-1, 6-4
Extended type 4-7, 5-9, 5-10, 

5-28, 11-5
external (directive) 6-6, 9-1, 9-2

F
False 5-6, 11-3
far (directive) 6-5
fields 5-21 to 5-24, 7-1, 7-7

See also records, classes
publishing 7-5

file (reserved word) 5-25
file I/O 8-1 to 8-6

exceptions 8-3
file variables 8-2
FilePos function 8-2
files

as parameters 6-12
file types 5-25, 8-2
generated 2-2, 2-3, 9-10, 9-11
initializing 5-38
memory 11-9
source code 2-1
text 8-2, 8-3
typed 5-25, 8-2
untyped 5-25, 8-2, 8-4
variants and 5-31

FileSize function 8-2
finalization section 3-3, 3-5, 12-4
Finalize procedure 5-19
finally (reserved word) 7-32
floating-point types See real 

types
Flush function 8-4, 8-6
for statements 4-20, 4-25, 4-26
form files 2-2, 2-5, 3-1, 7-5, 7-21
formal parameters 6-19
forms 2-2
forward declarations

classes 7-6
default parameters 6-19
interfaces 10-4
overloading and 6-9
routines 3-4, 6-6

Free method 7-15
FreeLibrary function 9-2
FreeMem procedure 5-39, 9-8, 

11-1, 11-2
functions 3-4, 6-1 to 6-20

assembler 13-16
calling externally 6-6
declaring 6-3, 6-6
function calls 4-13, 4-18, 6-1, 

6-19 to 6-20
nested 5-29, 6-11
overloading 6-6, 6-8
pointers 4-12, 5-29
return type 6-3, 6-4
return value 6-3, 6-4
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return values in 
registers 12-3, 13-17

fundamental types 5-1

G
-$G- compiler switch 9-12
$G directive 9-12
generic types 5-1
GetHeapStatus function 11-2
GetMem procedure 5-27, 5-39, 

9-8, 11-1, 11-2
GetMemoryManager 

procedure 11-2
GetProcAddress function 9-2
getter See read specifier
global identifiers 4-28
global variables 5-38

dynamically loadable 
libraries 9-6

interfaces 10-9
memory management 11-2

GlobalAlloc 11-1
globally unique identifiers See 

GUIDs
goto statements 4-18
grammar (formal) A-1 to A-7
greater-than See Symbols
GUIDs 10-1, 10-3, 10-10

generating 10-3

H
$H directive 5-11, 6-15
Halt procedure 12-4, 12-5
heading

program 2-1, 3-1, 3-2
routine 6-1
unit 3-3

heap memory 5-39, 11-2
Hello world! 2-3
HelpContext property 7-32
hexadecimal numerals 4-4
hiding class members 7-8, 7-11, 

7-22
See also overloaded methods
reintroduce 7-12

hiding interface 
implementations 10-6

High function 5-3, 5-4, 5-12, 
5-18, 5-20, 6-16

HInstance variable 9-7
hint directives 4-17
$HINTS directive 4-17

I
$I directive 8-3
IDE

See also Delphi
identifiers 4-1, 4-2, 4-3

global and local 4-28
in exception handlers 7-30
qualified 3-7
scope 4-27 to 4-29

IDispatch 10-9, 10-10
dual interfaces 10-13

if...then statements 4-22
nested 4-23

IInterface 10-2
immediate values 

(assembler) 13-12
implementation section 3-3, 3-4, 

3-7
and forward declarations 6-6
methods 7-8
scope 4-29
uses clause 3-7

implements (directive) 7-22, 
10-6

$IMPLICITBUILD 
directive 9-12

$IMPORTEDDATA 
directive 9-12

importing routines from 
libraries 9-1

in (reserved word) 3-6, 4-10, 
5-17, 5-33, 9-9

Inc procedure 5-3, 5-4
incrementing ordinals 5-3, 5-4, 

5-5
index (directive) 6-8
index specifier 7-6, 7-17, 7-20
index specifier (Windows 

only) 9-5
indexes 4-14

array 5-18, 5-19, 5-20
array properties 7-19
in var parameters 5-34, 6-13
string 5-11
string variants 5-31
variant arrays 5-34

indirect unit references 3-7
inequality operator 4-11
inheritance 7-2, 7-3, 7-5

interfaces 10-2
inherited (reserved word) 7-9, 

7-13
calling conventions 12-4
message handlers 7-16

InheritsFrom method 7-24
initialization

dynamically loadable 
libraries 9-5

files 5-38
objects 7-13
units 3-4
variables 5-38
variants 5-31, 5-38

initialization section 3-3, 3-4
exceptions 7-28

Initialize procedure 5-39
inline (reserved word) 13-1
inline assembler code 13-1 to 

13-17
inner block 4-29
InOut function 8-4, 8-5
input (program parameter) 3-2
input See file I/O
Input variable 8-3
Int64 type 4-7, 5-3, 5-4, 5-10, 

11-3
standard functions and 

procedures 5-4
variants and 5-31

integer operators 4-6
Integer type 4-7, 5-3, 5-4
integer types 5-3

comparison 4-11
constants 5-41
conversion 4-15
data formats 11-3

integrated development 
environment See IDE

interface declarations 3-4
default paramters 6-19

interface section 3-3, 3-4, 3-7
forward declarations and 6-6
methods 7-8
scope 4-29
uses clause 3-7

interfaces 7-2, 10-1 to 10-13
accessing 10-8 to 10-10
Automation 10-10
calling conventions 10-3
compatibility 10-9
delegation 10-6
dispatch interface 

types 10-10
dual interfaces 10-13
freeing 5-40
GUIDs 10-1, 10-3, 10-10
implementing 10-4 to 10-7
interface references 10-8 to 

10-10
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interface types 10-1 to 10-4
memory management 11-2
method resolution 

clauses 10-5, 10-6
properties 10-1, 10-4, 10-7
querying 10-10
records and 5-23
typecasts 10-10

internal data formats 11-2 to 
11-12

intersection (sets) 4-10
IntToHex function 5-4
IntToStr function 5-4
Invoke method 10-10
IOResult function 8-3, 8-4
is 4-12, 5-33, 7-24
IsLibrary variable 9-7
italics 1-2
IUnknown 10-2, 10-5, 10-9, 

10-13

J
$J directive 5-43
Java 10-1
jump instructions 

(assembler) 13-3

K
.kof files 2-2

L
labels 4-1, 4-4, 4-18

assembler 13-2
-$LE- compiler switch 9-12
Length function 5-11, 5-18, 5-20
less-than See Symbols
libraries See DLLs or 

dynamically loadable libraries
library (directive) 4-17
library (reserved word) 9-3
Library search path 3-6
line-feed 4-5
-$LN- compiler switch 9-12
LoadLibrary function 9-2
local (directive) 9-4
local directive (Linux only) 9-4
local identifiers 4-28
local variables 5-38, 6-10

memory management 11-2
LocalAlloc 11-1
locales 5-13
logical operators 4-8
long strings 4-9, 5-10, 5-12

files and 5-25
in dynamically loadable 

libraries 9-8
memory management 11-2, 

11-6
records and 5-23

LongBool type 5-6, 11-3
Longint type 5-4, 11-3
Longword type 5-4, 11-3
loop statements 4-20, 4-25
Low function 5-3, 5-4, 5-12, 

5-18, 5-20, 6-16
-$LU- compiler switch 9-12

M
$M directive 7-4, 7-6
main form 2-5
$MAXSTACKSIZE 

directive 11-2
members See  sets
members, of classes 7-1

interfaces 10-2
visibility 7-4

memory 4-1, 5-2, 5-25, 5-26, 
5-31, 5-38, 7-14

dynamically loadable 
libraries 9-6

heap 5-39
management 11-1 to 11-12
overlays (in records) 5-23
shared memory manager 9-8

memory references 
(assembler) 13-12

message (directive) 7-15
interfaces 10-7

message dispatching 7-16
message handlers 7-15

inherited 7-16
overriding 7-16

Message property 7-32
Messages unit 7-15
metaclasses 7-23
method directives

order 7-8
method pointers 4-12, 5-29
method resolution clauses 10-5, 

10-6
methods 7-1, 7-2, 7-8 to 7-17

abstract 7-12
Automation 7-6, 10-12
binding 7-10
calling conventions 12-3
class methods 7-1, 7-25
constructors 7-13, 12-4
destructors 7-14, 12-4

dispatch interface 10-11
dispatching calls 7-11
dual-interface 6-5
dynamic 7-10
implementation 7-8
overloading 7-12
overriding 7-10, 7-11, 10-6
pointers 4-12, 5-29
publishing 7-5
static 7-10
virtual 7-6, 7-10

$MINSTACKSIZE 
directive 11-2

minus See Symbols
mod 4-6
modules See units
multibyte character sets 5-13

string-handling routines 8-7
multidimensional arrays 5-18, 

5-20, 5-43
multiple unit references 3-7
multiplication 4-6
multithreaded applications 5-39

dynamically loadable 
libraries 9-7

mutually dependent classes 7-7
mutually dependent units 3-7

N
name (directive) 6-7, 6-8, 9-5
named parameters 10-12
names

See also identifiers
exported routines 9-5
functions 6-3, 6-4
identifiers 4-16
packages 9-10
programs 3-1, 3-2
units 3-3, 3-6

naming conflicts 3-6, 4-29
near (directive) 6-5
negation 4-7

bitwse 4-8
nested conditionals 4-23
nested exceptions 7-31
nested routines 5-29, 6-11
New procedure 5-19, 5-27, 5-39, 

7-4, 9-8, 11-1, 11-2
nil 5-27, 5-31, 5-40, 11-5
nodefault specifier 7-6, 7-17, 

7-21
not 4-6, 4-7
Null (variants) 5-31, 5-33
null character 5-13, 11-6, 11-7, 

11-10
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null string 4-4
null-terminated strings 5-13 to 

5-16, 5-27, 11-6, 11-7
mixing with Pascal 

strings 5-15
standard routines 8-6, 8-7

numerals 4-1, 4-4
as labels 4-4, 4-19
assembler 13-9
type 5-41, 6-8

O
object files

calling routines in 6-7
Object Inspector 7-5
Object Inspector (Delphi) 7-5
object interfaces See interfaces, 

COM, CORBA
object types 7-4
objects 4-21, 7-1

See also classes
’of object’ 5-29
comparison 4-11
files and 5-25
memory 11-10

of (reserved word) 4-24, 5-17, 
5-19, 5-25, 5-29, 6-15, 6-17, 7-23

of object (method pointers) 5-29
OleVariant 5-34
OleVariant type 5-28, 5-34
on (reserved word) 7-29
opcodes (assembler) 13-2
open array constructors 6-17, 

6-20
open array parameters 6-15, 

6-20
and dynamic arrays 6-16

Open function 8-4, 8-5
OpenString 6-15
operands 4-6
operators 4-6 to 4-13

assembler 13-15
class 7-24
precedence 4-12, 7-25

or 4-7, 4-8
Ord function 5-3, 5-4
order of method directives 7-8
ordinal types 5-2 to 5-9
ordinality 5-2

enumerated types 5-6, 5-7
out (output) parameters 6-12, 

6-13, 6-19
out (reserved word) 6-11, 6-12, 

6-13
outer block 4-29

OutlineError 7-32
output (program 

parameter) 3-2
output See file I/O
Output variable 8-3
overloaded methods 7-12

access specifiers 7-13, 7-18
publishing 7-5

overloaded procedures and 
functions 6-6, 6-8

default parameters 6-10, 6-19
dynamically loadable 

libraries 9-5
forward declarations 6-9

overriding interface 
implementations 10-6

overriding methods 7-10, 10-6
hiding and 7-11

overriding properties 7-22
access specifiers and 7-22
Automation 7-6
hiding and 7-22

P
$P directive 6-15
package files 2-2, 2-3, 9-8, 9-9, 

9-11
packages 9-8 to 9-12

compiler directives 9-12
compiler switches 9-12
compiling 9-11
declaring 9-9
loading dynamically 9-9
loading statically 9-9
thread variables 9-10
uses clause and 9-9

packed (reserved word) 5-17, 
11-8

packed arrays 4-5, 4-9, 5-18
packed records 11-8
packed strings 5-18

comparison 4-11
pairs of symbols 4-2
PAnsiChar type 5-13, 5-27
PAnsiString type 5-28
parameters 5-29, 6-2, 6-3, 6-11 to 

6-19
See also overloaded 

procedures and functions
actual 6-19
array 6-12, 6-15
array property indexes 7-19
Automation method 

calls 10-12
calling conventions 6-5

constant 6-13, 12-1
default 6-18 to 6-19, 10-12
file 6-12
formal 6-19
names 10-12
open array 6-15
output (out) 6-13
overloading and 6-6, 6-8, 6-9
parameter list 6-11
passing 12-1
positional 10-12
program control 12-1
properties as 7-17
registers 6-5, 12-2
short strings 6-15
typed 6-12
untyped 6-14, 6-19
value 6-12, 12-1
variable (var) 6-12, 12-1
variable number 6-6
variant open arrray 6-17

parentheses See Symbols
partial evaluation 4-7
partitioning

application 9-8
.pas files 2-3, 3-1, 3-3, 3-7
pascal (calling convention) 6-4, 

12-2
constructors and 

destructors 12-4
Self 12-4

PByteArray type 5-28
PChar type 4-5, 4-9, 5-13, 5-14, 

5-15, 5-27, 5-45
comparison 4-11

PCurrency type 5-28
PDouble type 5-28
period See Symbols
PExtended type 5-28
PGUID 10-3
PInteger type 5-28
platform (directive) 4-17
plus See Symbols
Pointer type 5-25, 5-26, 5-27, 

11-5
pointers 5-25 to 5-28

arithmetic 4-9
character 5-27
constants 5-44
files and 5-25
functions 4-12, 5-29
in var parameters 6-13
in variant open array 

parameters 6-17
long strings 5-16
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memory 11-5
method pointers 5-29
nil 5-27, 11-5
null-terminated strings 5-14, 

5-16
operators 4-9
overview 5-26
Pointer type 4-12, 11-5
pointer types 4-12, 5-26, 5-27 

to 5-28, 11-5
procedural types 4-12, 5-28 

to 5-31
records and 5-23
standard types 5-27, 5-28
variants and 5-31

POleVariant type 5-28
polymorphism 7-9, 7-11, 7-14
positional parameters 10-12
pound See Symbols
precedence of operators 4-12, 

7-25
Pred function 5-3, 5-4
predecessor 5-2
predefined types 5-1
private class members 7-4, 7-5
procedural constants 5-44
procedural types 4-15, 5-28 to 

5-31
calling dynamically loadable 

libraries 9-2
calling routines with 5-30
compatibility 5-29
default parameters 6-18
in assignments 5-30
memory 11-10

procedure pointers 4-12, 5-29
procedures 3-4, 6-1 to 6-20

assembler 13-16
calling externally 6-6
declaring 6-2, 6-6
nested 5-29, 6-11
overloading 6-6, 6-8
pointers 4-12, 5-29
procedure calls 4-18, 6-1, 6-2, 

6-19 to 6-20
program (reserved word) 3-2
program control 6-19, 12-1 to 

12-6
programs 2-1 to 2-5, 3-1 to 3-9

examples 2-3 to 2-5
syntax 3-1 to 3-3

project files 2-2, 3-1, 3-2, 3-6
Project Manager 2-1
project options files 2-2
projects 2-5, 3-6

properties 7-1, 7-17 to 7-23
access specifiers 7-17
array 7-5, 7-19
as parameters 7-17
declaring 7-17, 7-19
default 7-20, 10-2
interfaces 10-4
overriding 7-6, 7-22
read-only 7-19
record 7-5
write-only 7-19

protected class members 7-4, 
7-5

prototypes 6-1
PShortString type 5-28
PSingle type 5-28
PString type 5-28
PTextBuf type 5-28
Ptr function 5-27
public class members 7-4, 7-5
public identifiers (interface 

section) 3-4
published class members 7-4, 

7-5
$M directive 7-6
restrictions 7-5

PVariant type 5-28
PVarRec type 5-28
PWideChar type 5-13, 5-14, 5-27
PWideString type 5-28
PWordArray type 5-28

Q
qualified identifiers 3-7, 4-2, 

4-29, 5-22
in typecasts 4-15
pointers 5-27
with Self 7-9

querying (interfaces) 10-10
QueryInterface method 10-2, 

10-5, 10-10
quotation marks See Symbols
quoted strings 4-4, 5-45

assembler 13-9
QWORD type (assembler) 13-15

R
raise (reserved word) 4-20, 7-27, 

7-29, 7-30
range-checking 5-4, 5-5, 5-9
Read procedure 8-2, 8-3, 8-4, 

8-5, 8-6
read specifier 7-6, 7-17

array properties 7-19

index specifier and 7-20
object interfaces 10-1, 10-4, 

10-7
overloading 7-13, 7-18

Readln procedure 8-5, 8-6
readonly (directive) 10-2, 10-11
read-only properties 7-19
real (floating-point) 

operators 4-6
Real type 5-10
real types 5-9, 11-4

comparison 4-11
conversion 4-15
publishing 7-5

Real48 type 5-9, 5-10, 7-5, 11-4
$REALCOMPATIBILITY 

directive 5-10
ReallocMem procedure 5-39, 

11-1
records 4-21, 5-21 to 5-24

constants 5-43
in properties 7-5
memory 11-8
record types 5-21
scope 4-29, 5-22
variant parts 5-23 to 5-24
variants and 5-31

recursive procedure and 
function calls 6-1, 6-4

reference-counting 5-12, 10-9, 
11-6, 11-7

register (calling 
convention) 6-4, 7-6, 7-13, 
7-14, 12-2

constructors and 
destructors 12-4

dynamically loadable 
libraries 9-4

interfaces 10-3, 10-7
Self 12-4

registers 6-5, 12-2, 12-3
assembler 13-2, 13-10, 13-12, 

13-17
storing sets 11-7

reintroduce (directive) 7-12
relational operators 4-11
_Release method 10-2, 10-5, 

10-9
relocatable expressions 

(assembler) 13-13
Rename procedure 8-6
repeat statements 4-20, 4-25
requires clause 9-8, 9-9, 9-10
.RES files 2-2, 3-2
reserved words 4-1, 4-2, 4-3



I n d e x I-9

See also directives
assembler 13-7
list 4-3

Reset procedure 8-2, 8-4, 8-5, 
8-6

resident (directive) 9-5
resource files 2-2, 2-3, 3-2
resource strings 5-42
resourcestring (reserved 

word) 5-42
Result variable 6-3, 6-4
RET instruction 13-3
return type (functions) 6-3, 6-4
return value (functions) 6-3, 6-4

constructors 7-13
Rewrite procedure 8-2, 8-4, 8-5, 

8-6
Round function 5-4
routines 6-1 to 6-20

See also functions, procedures
exporting 9-5
standard 8-1 to 8-10

RTTI 7-5, 7-12, 7-21
$RUNONLY directive 9-12
runtime binding See dynamic 

methods, virtual methods
runtime packages 9-8
runtime type information See 

RTTI

S
$S directive 11-2
safecall (calling convention) 6-4, 

12-2
constructors and 

destructors 12-4
dual interfaces 10-13
interfaces 10-3
Self 12-4

scope 4-27 to 4-29
classes 7-3
records 5-22
type identifiers 5-37

Seek procedure 8-2
SeekEof function 8-5
SeekEoln function 8-5
Self 7-9

calling conventions 12-3
class methods 7-25

semicolon See Symbols
separators 4-1, 4-5
SetLength procedure 5-11, 5-16, 

5-19, 5-20, 6-16
SetMemoryManager 

procedure 11-2

sets
empty 5-17
memory 11-7
operators 4-10
publishing 7-5
set constructors 4-13
set types 5-17
variants and 5-31

SetString procedure 5-16
setter See write specifier
shared object files 2-3, 9-1

dynamically loadable 9-2
exceptions 9-7
importing functions 6-7

ShareMem unit 9-8
shift-left (bitwise operator) 4-8
shift-right (bitwise operator) 4-8
shl 4-8
short strings 5-3, 5-10, 5-12
short-circuit evaluation 4-7
Shortint type 5-4, 11-3
ShortString type 5-10, 5-12, 

5-28, 11-5
parameters 6-15
variant arrays and 5-34

ShowException procedure 7-32
shr 4-8
sign

in typecasts 4-15
numerals 4-4

simple statements 4-17
simple types 5-2
Single type 5-9, 11-4
16-bit applications (backward 

compatibility) 6-5
SizeOf function 5-2, 5-5, 6-16
slash See Symbols
Smallint type 5-4, 11-3
.so files 9-1
source-code files 2-1
spaces 4-1
special symbols 4-1, 4-2
stack size 11-2
standard routines 8-1 to 8-10

null-terminated strings 8-6, 
8-7

wide-character strings 8-7
statements 4-1, 4-17 to 4-27, 

4-28, 6-1
static arrays 5-18, 11-7

variants and 5-31
static methods 7-10
statically loaded libraries 9-1
stdcall (calling convention) 6-4, 

12-2

constructors and 
destructors 12-4

interfaces 10-3
Self 12-4
shared libraries 9-4

storage specifiers 7-21
array properties and 7-22

stored specifier 7-6, 7-17, 7-21
Str procedure 8-6
StrAlloc function 5-39
StrDispose procedure 5-39
streaming (data) 5-2, 7-5
string

See also character sets
comparison 4-11, 5-11
constants 4-4, 5-45, 13-9
handling See also standard 

routines, null-terminated 
strings

in variant open array 
parameters 6-17

indexes 4-14
literals 4-4, 5-45
memory management 11-5, 

11-6
null-terminated 5-13 to 5-16, 

5-27
operators 4-9, 5-15
parameters 6-15
types 5-10 to 5-16
variant arrays 5-34
variants 5-31
wide 5-13, 8-7, 11-2

string (reserved word) 5-11
StringToWideChar function 8-7
strong typing 5-1
StrToInt64 function 5-4
StrToInt64Def function 5-4
structured statements 4-20
structured types 5-16

files and 5-25
records and 5-23
variants and 5-31

structures 5-21
StrUpper function 5-15
subrange types 4-7, 4-24, 5-8
subset operator 4-10
subtraction 4-6

pointers 4-9
Succ function 5-3, 5-4
successor 5-2
superset operator 4-10
symbol pairs 4-2
symbols 4-1, 4-2
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See also special symbols and 
Symbols on page I-1

assembler 13-10
syntax

descriptions 1-2
formal A-1 to A-7

System unit 3-1, 3-5, 5-28, 5-31, 
5-33, 6-17, 7-3, 7-28, 8-1, 8-7, 
10-2, 10-3, 10-5, 10-10, 11-11

dynamically loadable 
libraries 9-6, 9-7

memory management 11-2
modifying 8-1
scope 4-29
uses clause and 8-1

SysUtils unit 3-5, 5-28, 6-11, 
6-17, 7-26, 7-27, 7-28, 7-32

dynamically loadable 
libraries 9-8

uses clause and 8-1

T
$T directive 4-12
tag (records) 5-23
TAggregatedObject 10-7
TBYTE type (assembler) 13-15
TByteArray type 5-28
TClass 7-3, 7-23, 7-24
TCollection 7-23

Add method 7-9
TCollectionItem 7-24
TDateTime 5-33
text files 8-2, 8-3
Text type 5-25, 8-3
text-file device drivers 8-4
TextFile type 5-25
TGUID 10-3
then (reserved word) 4-22
thread variables 5-39

in packages 9-10
threadvar 5-39
TInterfacedObject 10-2, 10-5
to (reserved word) 4-26
TObject 7-3, 7-16, 7-24
tokens 4-1
TPersistent 7-6
True 5-6, 11-3
true constants 5-40
Trunc function 5-4
try...except statements 4-20, 

7-28
try...finally statements 4-20, 

7-31
TTextBuf type 5-28
TTextRec type 5-28

TVarData 5-31, 11-11
TVarRec 5-28
TVarRec type 6-17
TWordArray 5-28
type identifiers 5-2
Type Library editor 10-3
typecasts 4-14 to 4-16, 7-8

checked 7-25, 10-10
enumerated types 5-8
in constant declarations 5-40
interface 10-10
untyped parameters 6-14
variants 5-32

type-checking (objects) 7-24
types 5-1 to 5-37

array 5-18 to 5-21, 11-7
assembler 13-13
assignment-

compatibility 5-36
automatable 7-6, 10-11
Boolean 5-5, 11-3
built-in 5-1
character 5-5, 11-3
class 7-1, 7-2, 7-4, 7-6, 7-7, 

7-8, 7-17, 11-10
classification 5-1
class-reference 7-23, 11-11
compatibility 5-17, 5-29, 5-36
constants 5-40
declared 5-1
declaring 5-37
dispatch interface 10-10
enumerated 5-6 to 5-8, 11-3
exception 7-27
file 5-25, 11-9
fundamental 5-1
generic 5-1
integer 5-3, 11-3
interface 10-1 to 10-4
internal data formats 11-2 to 

11-12
object 7-4
ordinal 5-2 to 5-9
pointer 5-27 to 5-28
predefined 5-1
procedural 5-28 to 5-31, 

11-10
real 5-9, 11-4
record 5-21 to 5-24, 11-8
scope 5-37
set 5-17, 11-7
simple 5-2
string 5-10 to 5-16, 11-5, 11-6
structured 5-16
subrange 5-8

type identity 5-35
user-defined 5-1
variant 5-31 to 5-35

typographical conventions 1-2

U
UCS-2 5-13
UCS-4 5-13
unary operators 4-6
Unassigned (variants) 5-31, 5-33
underscores 4-2
Unicode 5-5, 5-13
union (sets) 4-10
UniqueString procedure 5-16
unit files 3-1, 3-3

case-sensitivity 4-2
units 2-1, 3-1 to 3-9

scope 4-29
syntax 3-3 to 3-9

until (reserved word) 4-25
untyped files 5-25, 8-2, 8-4
untyped parameters 6-14
UpCase function 5-11
uses clause 2-1, 3-1, 3-2, 3-4, 3-5 

to 3-9
interface section 3-7
ShareMem 9-8
syntax 3-6
System unit and 8-1
SysUtils unit and 8-1

V
Val procedure 8-6
value parameters 6-12, 6-19, 

12-1
open array constructors 6-20

value typecasts 4-14
var (reserved word) 5-38, 6-11, 

6-12, 12-1
varargs (directive) 6-6
VarArrayCreate function 5-34
VarArrayDimCount 

function 5-34
VarArrayHighBound 

function 5-34
VarArrayLock function 5-34, 

10-12
VarArrayLowBound 

function 5-34
VarArrayOf function 5-34
VarArrayRedim function 5-34
VarArrayRef function 5-34
VarArrayUnlock 

procedure 5-34, 10-12
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VarAsType function 5-32
VarCast procedure 5-32
variable (var) parameters 6-12, 

6-19, 12-1
variable parameters 6-19
variable typecasts 4-14, 4-15
variables 4-6, 5-37 to 5-40

absolute addresses 5-39
declaring 5-38
dynamic 5-39
file 8-2
from dynamically loadable 

libraries 9-1
global 5-38, 10-9
heap-allocated 5-39
initializing 5-38
local 5-38, 6-10
memory management 11-2
thread 5-39

variant arrays 5-31, 5-34
variant open array 

parameters 6-17, 6-20
variant parts (records) 5-23 to 

5-24
variants 5-31 to 5-35, 11-12

and Automation 11-12
complete evaluation 4-8
conversions 5-31, 5-32 to 

5-33, 5-34
files and 5-25
freeing 5-40
initializing 5-31, 5-38
interfaces and 10-9, 10-10
memory management 11-2, 

11-11
OleVariant 5-34
operators 4-6, 5-33
records and 5-23
short-circuit evaluation 4-8
typecasts 5-32

variant arrays 5-34
variant arrays and 

strings 5-34
Variant type 5-28, 5-31
variant types 5-31 to 5-35

varOleString constant 5-34
varString constant 5-34
VarType function 5-31
varTypeMask constant 5-31
VCL 1-2
virgule See Symbols
virtual method table 11-10
virtual methods 7-10

Automation 7-6
constructors 7-14
overloading 7-12

VirtualAlloc function 11-1
VirtualFree function 11-1
visibility (class members) 7-4

interfaces 10-2
Visual Component Library See 

VCL
VMT 11-10
VMTOFFSET 13-6

W
$WARNINGS directive 4-17
$WEAKPACKAGEUNIT 

directive 9-12
while statements 4-20, 4-25, 

4-26
wide characters and 

strings 5-13
memory management 11-2
standard routines 8-7

WideChar type 4-9, 5-5, 5-11, 
5-13, 5-27, 11-3

WideCharLenToString 
function 8-7

WideCharToString function 8-7
WideString type 5-10, 5-13, 5-28

memory management 11-6
Windows 7-16

memory management 11-1, 
11-2

messages 7-15
variants and 11-11

Windows unit 9-2
with statements 4-20, 4-21, 5-22
Word type 5-4, 11-3

assembler 13-14
WordBool type 5-6, 11-3
wrap-around (ordinal 

types) 5-4, 5-5
Write procedure 8-2, 8-3, 8-4, 

8-5, 8-6
write procedures 5-3
write specifier 7-6, 7-17

array properties 7-19
index specifier and 7-20
object interfaces 10-1, 10-4
overloading 7-13, 7-18

Writeln procedure 2-4, 8-5, 8-6
writeonly (directive) 10-2, 10-11
write-only properties 7-19

X
$X directive 4-5, 4-18, 5-14, 6-1, 

6-4
.xfm files 2-2, 2-7, 7-5
xor 4-7, 4-8

Z
-$Z- compiler switch 9-12
$Z directive 11-3
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